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Abstract

Context-Aware Navigation for Safe and
Efficient Maneuver Control of Moving

Objects in Cyber-Physical Systems

The growth of seamless moving nodes in cyber-physical systems such as vehicles and

UAVs demands a safe framework to ensure the quality of their intended services. This

dissertation studies the context-aware navigation mechanism for terrestrial vehicles and

unmanned aerial vehicles (UAVs).

A connected network of automated vehicles on roads can increase the driving safety

of driverless vehicles (i.e., autonomous vehicles). The critical level of dangerous situ-

ations on the road while driving can be increased by the speed, orientation, and traffic

density of the vehicles involved. Therefore, there is a need for a maneuvering mechanism

that handles both the current driving vehicle and the oncoming vehicles headed toward

an emergency zone (e.g., road hazard and road accident spot). In this thesis, we present a

context-aware navigation protocol (CNP) that enhances the safety of vehicles driving on

urban roads. Firstly, CNP includes a collision avoidance module that analyzes the driv-

ing risks to determine the necessary maneuvers in dangerous situations. Secondly, CNP

establishes a collision mitigation strategy that limits the severity of collision damages in

ix



hazardous roads during non-maneuverable scenarios. The performance results show that

CNP can reduce communication overhead from a baseline scheme by up to 60% while

the risk of road collisions is less than 5%.

Unmanned Aerial Vehicles (UAVs) have recently been attracting growing attention

from researchers because of their properties, which are highly suited to mission-oriented

applications. This thesis proposes a Collision-Avoidance Navigation Algorithm (CANA)

that uses cooperative flight controls in heterogeneous heavy-traffic UAV networks. It

has an autonomous swarm-based cooperation and coordination design that supports con-

text sharing for a large amount of UAV traffic mobility. This UAV navigation’s sensing

and communication allow it to detect and avoid possible collisions by establishing de-

tour paths. Our algorithm’s simulation performance shows a reduction in communication

control overhead that reaches 66.6% of the legacy scheme’s overhead while keeping the

lowest collision risk compared with the baselines.

The Graph Convolutional Networks (GCN) have emerged in Intelligent Transporta-

tion Systems (ITS) to enhance safety, efficiency, and traffic predictability, which benefits

vehicular navigation services in road networks. This study proposes a Machine Learning-

Assisted Self-Adaptive Interactive Navigation Tool (ML-SAINT) for efficient parcel de-

livery in road networks. It investigates the ability of GCN in predicting the best route

that satisfies the requirements of parcel delivery. It proposes rapid and accurate spatial-

temporal traffic information perception to predict optimal courier delivery schedules. The

simulation results show that this proposed scheme reduces up to 44.19% of the travel de-

lay of delivery vehicles compared to baseline schemes.

Keywords: Intelligent transportation systems, context-aware navigation, vehicular

networks, collision avoidance, graph convolution networks
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Chapter 1

Introduction

Vehicular cyber-physical systems (VCPs) have been receiving increasing attention as they

provide means for efficient and safe transportation systems [1]. The rapid development

of sensing and perception facilities, such as networking technologies, paved the way for

the VCPs. The increasing number of connected ground nodes (vehicles) and aerial nodes

(unmanned aerial vehicles (UAVs)) is benefiting from the potential of VCPs. However,

this increases the demand for safety-preserving mechanisms to ensure safe and robust

services of these systems.

By moving objects in this thesis, we refer to intelligent autonomous vehicular entities

like vehicles and UAVs. The moving objects in VCPs comprise ground and aerial vehi-

cles, as illustrated in Fig. 1.1, forming an intelligent transportation system (ITS) where

nodes can make informed navigation decisions. For their efficiency, a technological in-

frastructure that enabled their computing, communication, and control was put in place.

This enhances their safety, efficiency, and convenience. Fig. 1.1a depicts a high-level

illustration of communication in ground and aerial vehicles. The ground vehicles’ au-

tonomous driving enables advanced systems such as adaptive cruise control, lane depar-

ture warning, and cooperative driving to enhance road safety. For aerial vehicles (i.e.,

1



UAVs, future air taxis), ITS involves automated flight control, collision avoidance sys-

tems, and integration with air traffic management at the ground control centers (GCC).

The core idea is to make these vehicles smarter and more connected to their environment

and infrastructure.

The autonomous driving major anticipated benefit is to improve driving safety. How-

ever, they face a lack of public acceptance stemming from safety concerns [2, 3]. Sev-

eral remedies to those concerns resulted in the development of road safety preserving

systems such as driver warning systems (e.g., night vision, lane departure, and adap-

tive cruise control) and automated driver-system cooperation systems (e.g., low-speed

automated driving and forward collision prevention) [4]). On the other hand, several

use cases of UAVs have also been ongoing. Several recent studies resulted in a number

UAV applications such as the mission-oriented UAVs (i.e., patrolling, recording, surveil-

lance and inspections, parcel delivery, disaster management such as prediction, assess-

ment and response, and the air taxis which in future will enhance the urban transporta-

tion) [5, 6, 7, 8, 9, 10, 11]. When this different mission will be operating in the same

airspace, the risks of crashes and interference will grow higher, therefore necessitating a

safe coordinated context-awareness mechanism to navigate them.

This thesis studies a context-aware navigation for safe maneuver control of mov-

ing objects in cyber-physical systems. It explores the possibilities of urban transporta-

tion, analyzes collision risks, and provides safety-preserving maneuvers as illustrated in

Fig. 1.1b. Firstly, it presents a context-aware navigation protocol (CNP) with two crit-

ical features, namely, collision avoidance and collision mitigation. Assuming a fully

connected environment supported by vehicle-to-vehicle (V2V), vehicle-to-infrastructure

(V2I), and the infrastructure-to-vehicle (I2V) communication, it reduces the commu-

nication overhead and the risk of crashing. It designs a communication protocol for

connected and automated vehicles’ driving, considering communication as a means of

2
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(b) Context-awareness of moving objects

Figure 1.1: High-level architecture of moving objects in vehicular cyber-physical
systems.

safety-preserving schemes. Secondly, it models a collision-avoidance navigation algo-

rithm (CANA) for UAV flying networks with heavy traffic, which proposes to avoid col-

lisions in airspace autonomously. CANA proposes an autonomous aerial collision avoid-

ance mechanism benefiting from air-to-air and air-to-ground communications. From air

to ground communication data, the ground control center (GCC) predicts the flying set-

tings that avoid collision among UAVs, and minimizes the detour cost required by the

UAVs’ maneuvers. CANA proposes heuristic solutions using acceptable approximations

to remedy the complexity of the Unmanned Aerial Vehicles (UAVs) collision-avoidance

algorithms optimization. Thirdly, this thesis explores the potential of machine learning

to boost the application-specific vehicular navigation by designing a machine learning-

assisted self-adaptive interactive navigation tool (ML-SAINT) for efficient parcel deliv-

ery in road networks. It designs a distributed traffic algorithm that integrates a graph

attention-aware machine learning model for application-specific traffic forecasting and

cost-efficient last-mile delivery route planning.

The rest of this dissertation is organized as follows:

• Chapter 2 studies a context-aware navigation protocol (CNP) for safe driving in

3



vehicular cyber-physical systems.

• Chapter 3 proposes a collision-avoidance navigation algorithm (CANA) for UAV

flying networks with heavy traffic.

• Chapter 4 proposes a machine learning-assisted self-adaptive interactive navigation

tool (ML-SAINT) for efficient parcel delivery in road networks.

• Chapter 5 concludes this dissertation and suggests challenges and future issues for

moving objects in cyber-physical systems.

4



Chapter 2

CNP: Context-Aware Navigation

Protocol for Safe Driving in Vehicular

Cyber-Physical Systems 1

The benefits of advancements in vehicular cyber-physical systems have increased the pos-

sibility of connected vehicles. These vehicles require an intelligent ability to sense, per-

ceive, and decide on the situations arising on the road. This chapter proposed a context-

aware navigation protocol (CNP) for safe driving using risk assessment-based maneuver

planning. Two features, namely, collision avoidance and collision mitigation, are pro-

posed to enhance road safety. Assuming a fully connected environment supported by

vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and infrastructure-to-vehicle

(I2V) communication, the designed CNP reduces the risk of crashing on a road with

obstacles.

It studies a strategy to guide vehicles that could be potentially affected by obstacles to-

wards a safe lane to avoid out-of-sight obstacles using wireless communications. Firstly,
1The work presented in this chapter has been published in [12].
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it proposes a collision avoidance based on the cost of lane quality to define possible vehi-

cle maneuvers. Secondly, for non-avoidable obstacles, a collision mitigation is proposed

based on the energy transfer and the number of emergency vehicles. The corresponding

collision avoidance and maneuvers mitigation are generated and sent to related vehicles

grouped in clusters via cluster heads (CH). It proves the proposed method’s effectiveness

by comparing it with sensor-based (i.e., LIDAR) and the networked collision avoidance

system (NCAS).

2.1 Introduction

Vehicle networking enables interoperability among vehicles, drivers, pedestrians, and

road network infrastructures, which directly impacts the transportation safety [13]. Driver-

less vehicle technology has attracted increasing research interest in both academia and

industry due to its potential to substantially enhance vehicular transportation in terms of

accessibility, safety, and convenience. One of the most anticipated benefits of self-driving

vehicles is the lack of a driver’s errors that lead to accidents. Human drivers are respon-

sible for 94% of critical events that cause crashes, while the environment, vehicles, and

unknown-related causes cumulatively account for the remaining 6% [14]. The expected

increase in driving safety is one of the main motivations to invest in autonomous driving

research.

Although autonomous vehicles promise to improve driving safety, they face a lack of

public acceptance stemming from safety concerns [2, 3], and significant research initia-

tives have gone toward addressing those concerns. Over the past three decades, a vehicle

has reached a new technological maturity with driver assistance systems (DAS) [4]. These

include driver warning systems (e.g., night vision, lane departure, and adaptive cruise

control) and automated driver-system cooperation systems (e.g., low-speed automated

6
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(b) Solution Steps.

Figure 2.1: Illustration of the complexity of driving with the presence of an obstacle
in the road.

driving and forward collision prevention). However, human driving errors can be fully

eradicated with the introduction of autonomous driving. Despite recent research efforts,

there is still a need for safety-enabling systems for vehicles to autonomously cooperate in

assessing driving risk outside of the line of collision. These systems need to safely guide

vehicles to avoid collisions in the road without jeopardizing their safety and with minimal

or no effect on their overall trajectory. A system that integrates road infrastructures with

vehicles to have computing, communication, and control abilities is commonly known as

a vehicular cyber-physical system (VCPS) [1].

This chapter presents a context-aware navigation protocol (CNP) to increase driving

safety in VCPS. The CNP is a protocol that solves a complex urban driving scenario as

shown in Fig. 2.1a. When a vehicle abruptly stops in the middle of a lane, it creates

an unexpected driving situation for any following vehicles. The reaction of e1 may im-

pact the driving of either e2, l1 or r1, which in turn will need to react, thereby creating a

more complex driving scenario. We name “emergency zone” the part of the road where

the vehicles need to maneuver to bypass an obstacle, and those vehicles are “emergency

vehicles”. This system distinguishes two classes of emergency vehicles. A directly con-

cerned vehicle e1 is emergency class 1, while indirectly affected ones are emergency class

2.
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Through modular steps described in Fig. 2.1b, CNP provides a relevant driving solu-

tion for vehicles driving in hazardous situations. First, a data sensing which consists of

sending and receiving the self-sensed and remote-sensed mobility information according

to the CNP communication protocol described in Section 2.4.1. Second, a risk assessment

that analyzes the received data to identify abnormal behavior in the driving environment

and collision avoidance modalities. Third, a path maneuver that defines the appropriate

trajectories changes either longitudinally or laterally across the road for the concerned

vehicles. Lastly, a path tracking, which keeps the maneuver path until the maneuvered

vehicle reaches the target without deviation. The path maneuvers are shared with the

neighbors via communication for awareness purposes.

The major contributions of this work are summarized as follows:

• The design of networked context awareness navigation protocol (CNP): It is a

protocol that uses an IPv6 Neighbor Discovery (ND) option to convey vehicles’ mo-

bility information. This protocol enables cooperative sensing through light-weight

message sharing. It renders ambient awareness by quickly analyzing sensed data to

determine anomalous behaviors such as abrupt slowing and sudden lane changes.

Upon the detection of emergency risks, the CNP takes further measures to quickly

adjust a vehicle’s trajectory (see Section 2.4).

• Lane quality-based collision avoidance: We develop a lane metric indicating the

state of lane collision risk prior to emergency vehicle maneuver decision. It per-

mits vehicles to maneuver towards the safest lane and lets their maneuver have the

minimal impact on the overall road safety. Through the probabilistic collision risk

assessment, we deduce the best maneuver for a vehicle in risk of collision with an

obstacle in the road (see Section 2.4).

• A simulation-based evaluation of the proposed model: In order to demonstrate

8



the efficiency and usefulness of the proposed model in this chapter, we implemented

a vehicular simulation and evaluated it under various conditions. The evaluation re-

sults show that the CNP can reduce the risk of collision with a little communication

overhead compared to the baselines (see Section 2.5).

Note that this is an improvement of the preliminary work presented in our previous pa-

per [15].

The rest of this chapter is organized as follows. Section 2.2 summarizes the previous

work related to our study. Section 2.3 makes the notation definitions and assumptions

used in this chapter, and defines the problem that this work solves as well. Our network-

based vehicle tracking mechanism is described in detail in Section 2.4. Section 2.5 vali-

dates our CNP mechanism by comparing it with other sensing and tracking mechanisms.

Finally, we conclude this chapter along with future work in Section 2.6.

2.2 Related Work

This section summarizes the previous work focusing on driving safety for connected and

automated vehicles.

Beginning with the DARPA urban challenge in 2007 [16], several studies have at-

tempted to design autonomous vehicles that can be used in real driving. Autonomous

vehicles can make meaningful assessments according to the significance of any perceived

data, and they can also predict future events and make proactive decisions to avoid acci-

dents [17]. Proper awareness and assessment mechanisms are needed to respond to the

wide variety of situations that arise in real road traffic.

To avoid collisions in autonomous driving, several mechanisms have been proposed,

including both sensor-based and non-sensor-based approaches. A typical sensor-based

mechanism is the lane-level beacon-less, infrastructure-less, and GPS-less cooperative

9



collision avoidance (BIG-CCA) framework proposed by Chen and Chou [18]. This mech-

anism uses V2V communication to warn vehicles in the same lane of any danger. Another

model proposed by [19] uses a platooning paradigm to model accidents involving a pla-

toon equipped with a warning notification system. A parallel autonomy framework uses a

nonlinear model predictive control to compute a safe trajectory for an automated vehicle

based on human input [20]. The cooperative collision avoidance (CCA) systems enable

vehicles to cooperate to achieve driving safety.

CCA mechanisms include platooning [21], a networked collision avoidance system [22],

an agent-based situational assessment [23], and a feature-based cooperative perception

framework (F-Cooper) [24]. In the platooning, vehicles follow the same route and drive

closely, enabling them to cooperate through low-latency data delivery. The networked

collision avoidance system (NCAS) allows vehicles to work together by broadcasting

driving information over a shared channel. A central controller collects the driving data

and manages vehicles that behave according to an agent-based modeling [23]. F-Cooper

is an object detection model that was proposed to remedy the limitations caused by

network bandwidth and the constraints of autonomous applications. The cooperative

adaptive cruise control proposed by [25] regulates the interdistance between vehicles to

achieve string stability in a networked control system.

Junietz et al. studied an approach to define the criticality metrics that validate the

safety of automated driving [26]. Using the model predictive control (MPC), they define

the driving required in a specific situation for real-time trajectory planning and control.

Feng et al. reduced the required testing miles required to validate the driving safety per-

formance in autonomous vehicles by adversarial adjustments to the naturalistic driving

environment [27]. The model predictive instantaneous safety proposed by [28] analyzes

the closeness to collision to guarantee safety in terms of time to collision. Li et al. pro-

posed a collision avoidance (CA)-based risk assessment where metrics such as time to

10
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Figure 2.2: CNP networked emergency handle target model.

collision, time to stop, and time to react are combined to define the safety status of driving

vehicles [29]. Unlike the prior models, our context-aware navigation protocol provides

a possibility to preemptively avoid collision with out-of-sight obstacles through wireless

communication by guiding them towards a safe lane. The CNP includes an emergency

path planning and tracking strategy based on a minimal contour tracking algorithm pro-

posed in [30] to define the path maneuver for vehicles both in line-of-sight and out-of-

sight of the obstacle in the road.

2.3 Problem Formulation

We designed the CNP with two-fold safety oriented objective such as collision avoidance

and collision mitigation. The collision avoidance model ensures that the autonomous

vehicles drive safely when they are faced with obstacle(s) in a road segment. Meanwhile,

the collision mitigation model, which is proposed by this chapter, guarantees a minimal

11



collision impact for unavoidable accident scenarios. In this section, we describe in detail

the notations, assumptions, and the problem targeted by our model.

2.3.1 Notation Definitions

Fig. 2.2 shows a networked emergency processing architecture. In this chapter, we adopt a

communication protocol wherein vehicles are grouped intom clustersC = {C1, C2, ..., Cm};

the cluster head (CH) is the leader of the cluster. Our model uses the K-mean clustering

approach [31] where CH is a cluster-head vehicle which makes the smallest intraclus-

ter Euclidean distance from its cluster members. CHs share driving information with

each other via Vehicle-to-Vehicle (V2V) communication. Meanwhile, the Traffic Control

Center (TCC) maintains traffic statistics and communicates with the vehicles via Vehicle-

to-Infrastructure (V2I) communication.

Let an emergency event be any unusual behavior that happens on the road that de-

grades the safety of vehicles. The emergency driving process described in Fig. 2.2, which

avoids collisions of vehicles, consists of the following steps:

Step 1: An emergency event suddenly occurs on the road, becoming a driving obstacle.

Step 2: A cluster member detects and broadcasts the obstacle information to its neigh-

bors.

Step 3: The CH receives and evaluates this information to identify the obstacle collision

risk. It calculates a required maneuver for each vulnerable member.

Step 4: The CH then informs the members in step 3 of the obstacles and the appropriate

maneuvers.

Step 5: The safety information is shared with neighboring clusters via their CHs.

12



Step 6: Each CH will take proactive steps to address any safety issues.

Step 7: Through V2I communication, the TCC receives and maintains up-to-date global

mobility statistics and calculates safe trajectories for vehicles in the road network.

Now we formulate equations and functions for our CNP. The nodes in vehicular ad

hoc networks (VANET) follow a very well-structured path organized in roads and their

sub-roads, or lanes. CNP considers a road segment eij with the number of lanes l > 1,

where N vehicles in a set V are traversing the road segment from entrance i toward exit

j intersections at a particular instant time t. At time t, a vehicle ni, i = {1, ..., N} state is

defined as

s =
[
xi yi vi θi

]T
, (2.1)

where (xi, yi) is its position, vi is its speed, θi is its moving direction, and its trajectory

control input is defined as

u =
[
ρi ai

]T
, (2.2)

where the steering angle is ρi and acceleration is ai. For a vehicle with a distance L

between two axles of a wheelbase [30], its θi can be derived by

θ̇i =
vi
L
tan(ρi). (2.3)

The dynamic that specifies ni’s future behavior is defined by the following nonlinear

differential equation:

ṡ = f(s, u(t)). (2.4)

A vehicle at risk of collision is an emergency vehicle, nem, and the one it is about to

collide with is an obstacle, nob. A lane where nem is positioned is an emergency lane, LE .

The nob can either be moving (i.e., moving extremely slowly) or resting (i.e., completely

stopped). A resting obstacle can only be defined by its position
[
xob yob

]T
.

13



2.3.2 Assumptions

We take into consideration the following assumptions in our CNP, which investigates the

traffic flow λ for a road segment in a defined time slot:

• Each vehicle is allowed to share both local and remote kinematics information.

• Periodically, each vehicle broadcasts its own mobility information, such as speed,

direction, and position, which allows the cluster header to identify its kinematics in

real time.

• CNP assumes that a non-sliding vehicle’s wheels roll with non-holonomic con-

straints, thus allowing a vehicle’s maneuvers to be defined without the impacts of

friction.

• Vehicles in a road segment are assumed to be moving in the same direction from

intersections i→ j or at rest. A vehicle is said to be at rest when its speed v = 0.

• An acceleration of a vehicle a has a minimum and maximum bound, i.e., a ∈

[amin, amax], where amin and amax are the lowest and highest accelerations attain-

able by a vehicle, respectively.

• A steering angle of a vehicle ρ has a minimal and maximum bound, i.e., ρ ∈

[ρmin, ρmax], where ρmin and ρmax are the minimal and maximal angles, respec-

tively, that a vehicle can steer its wheels.

14
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Figure 2.3: Emergency vehicles collision probabilities graph.

2.3.3 Problem Definition

Emergency Driving Handler

We illustrate a road network as a graph G = (V , E, c) constructed by a set of vehicles V

that defines the vertices, and a set of edges E with a cost equivalent to the collision risk

associated with a neighboring vehicle. The function c : E → W assigns the cost to each

edge as shown in Fig. 2.3. Given a graph G = (V , E, c), CNP computes a feasible lateral

driving path for a vehicle when an obstacle is identified in its safe driving direction.

Problem 2.3.1. Emergency path planning problem: It consists of determining a path

Pem for a vehicle ni ∈ V such that the collision probability Pcol associated with the

relative kinematics of adjacent vehicles shall always be low during the entire maneuver

time ∆t.

Let vp(t) be the speed of the front vehicle np (called the parent vehicle) driving or

resting ahead and vc(t) be the speed of the following vehicle nc (called the child vehicle)

at time t. Let ∆t be the required maneuver change time of the following vehicle nc. Let

β be the Euclidean distance between vehicle np and nc.
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Figure 2.4: An illustration of NP-Hardness for the emergency driving problem.

The collision probability Pcol for two vehicles np and nc during a maneuver time ∆t

is calculated as

Pcol

[∫ t+∆t

t

v(t) dt+ ϵv ≥ β

]
, (2.5)

where v(t) = |vc(t) − vp(t)| is the relative speed, and ϵv ∼ N (0, σ) is the speed mea-

surement error, σ = {1, 2, 3, ..., 10} km/h. The trajectory distance di(t) of an emergency

vehicle ni during the maneuver process is defined as

di(t) =

∫ t+∆t

t

{
v(t) +

∫ τ

t

(
aiu+ ϵa

)
du

}
dt, (2.6)

where v(t) is the speed function, u is the maneuver control input according to (3.2), a is

the acceleration, and ϵa is the acceleration error at time t.

NP-Hardness of Emergency Driving Problem

The solution of Problem 4.3.1 defines a safe path of nE
1 in a situation shown by Fig. 2.4

(a). The forward driving of nE
1 will collide with an obstacle nob and can collide with nE

2

if it abruptly slows its speed down. Moving to the left lane can cause a collision with nL
1

and its maneuvers to the right lane can cause a collision with nR
1 . Whatever the driving
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decision of nE
1 is, it can affect the maneuver of at least one among its adjacent vehicles.

Suppose that nE
1 moves to the left lane by stimulating the neighbor nL

1 ’s maneuver deci-

sion. Any maneuver of nL
1 should also consider the kinematics of its adjacent vehicles nE

2

and nL
2 . Those decisions can also result in the involvement of exponentially large-space

searching to find out a safest path for each vehicle in either a road segment or intersection.

Given a sequence of vehicles, each at the risk of colliding with neighbors, the decision-

making problem to find vehicles’ safe maneuvers is an NP-complete problem. Assume

that the road eij is a thief’s bag with three layers BL, BE , and BR each with capac-

ity n, respectively, representing the left lane of the emergency lane, the emergency lane

and the right lane of the emergency lane, as shown in Fig 2.4 (b). We demonstrate that

the knapsack problem [32] is a special case of the emergency path planning problem.

The knapsack problem is a well-known NP-complete problem. It is infeasible to find

a polynomial-time algorithm that can safely control the maneuvering of many vehicles

on the road. By knowing the safe lane quality among adjacent vehicles (defined in Sec-

tion 2.4.3) as a weight for knapsack, linear program (LP) relaxation can alleviate the diffi-

culty of the problem of emergency maneuver decision. The emergency driving decisions

set S∗ that maximizes the safe driving profit, is defined as function

f : V → B

such that S∗ ← argmax
N∑
i=1

Si, (2.7)

where Si is the safe lane quality of each vehicle as a safety metric in the maneuver lane

computed according to (4.14) and (2.13) in Section 2.4.3.

Minimized Collision Scenario

Our approach minimizes the collision impact in two ways. First, we ensure that the

colliding vehicles crash with as little energy transfer as possible. Second, we minimize
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the number of vehicles affected by this accident through collaborative maneuver control.

Problem 2.3.2. Collision impact minimization problem: When a child vehicle nc de-

tects a dangerous situation that is too close to be avoided, the collision impact shall be

minimized so that the involved vehicles may suffer minimal damage.

Equivalent Energy Speed (EES) [33] is computed as follows when a child vehicle nc

collides with a front, parent vehicle np:

EES = v̂c − vc =
2mp

mc +mp

(vp − vc), (2.8)

where mc and mp are the masses of nc and np, respectively, vc and vp are the speeds of nc

and np, respectively, and v̂c is the speed of nc after collision, i.e., resultant speed.

In Section 2.4, we discuss how our scheme computes the road collision risks and

deduces the proper maneuvers.

2.4 Sensing and Perception Module

2.4.1 CNP Communication Protocol

The proposed CNP enhances driving safety by offering a light-weight driving informa-

tion sharing method. This model has two types of messages that serve as IPv6 neighbor

discovery (ND) options for the CNP services: the cooperation context message (CCM)

and the emergency context message (ECM). CCM enables cooperative driving through

the exchange of a vehicle’s mobility information (e.g., speed, position, and direction) and

its driving actions (e.g., braking and accelerating) with its neighbors. ECM notifies a

vehicle’s neighbors of emergency situations (e.g., accidents). This protocol gives higher

priority to the ECM than the CCM in the message delivery process of vehicles.
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Figure 2.5: Cluster-head-coordinated dynamic path maneuver planning.

Due to ECM’s higher priority than CCM, a vehicle can take immediate action in

response to an emergency situation. As shown in Fig. 2.5, if there is an obstacle in a

road, an ECM message is sent to adjacent vehicles via a channel for safety purposes. We

advocate the use of multiple DSRC service channels that prioritize ECM safety messages.

We employ vehicle clustering wherein the cluster head (CH) leads the cluster members’

safety decisions. CH orchestrates the emergency maneuvers of its members to avoid

collisions. Both CCM and ECM transmissions are performed with IPv6 packets in IEEE

standard 802.11-OCB network mode [34]. The members’ maneuvering plans are decided

by a collision probability-based risk assessment, which will be defined in Section 2.4.2.

2.4.2 Probabilistic Risk Assessment

Dynamic road traffic participants drive within uncertain locations, directions, and speeds.

The maneuvering decisions of a vehicle in such a road are computationally uncertain. The

CNP determines the appropriate maneuverable driving lane depending on the collision

probability of the emergency vehicle.

We define the “collision probability” as the risk that a moving vehicle will collide with

an obstacle ahead in a road. The collision risk is generally calculated as time to collision

Tc through the relative kinematics of adjacent vehicles on the road [33]. The minimal
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maneuverable time to collision Tcmin is reached when a vehicle maximally accelerates

toward the obstacle, and the maximal maneuverable time to collision Tcmax is reached

when it minimally accelerates (i.e., maximally decelerates) toward the obstacle. Consid-

ering that the collision risk of an nem is uniformly distributed within Tc ∈ [Tcmin, Tcmax].

The collision probability that an nem will collide with nob is computed as follows:

P (nc ⊗ np) =


1, if Tc ≤ Tcmin, (2.9a)

0, if Tc ≥ Tcmax, (2.9b)

Pc,p, otherwise, (2.9c)

where (2.9a) means that a child vehicle nc will certainly collide with its parent vehicle

np, (2.9b) suggests that nc is safely driving away toward np, and (2.9c) defines a collision

probability (denoted as Pc,p) that nc is driving toward np which is computed as follows:

Pc,p = 1−
(

Tc − Tcmin

Tcmax − Tcmin

)
. (2.10)

Vehicles in an emergency driving situation can collide with other vehicles not only in

a line-of-sight unsafe range, but also in a non-line-of-sight but unsafe range [35]. Con-

sider an emergency vehicle nE
1 driving towards nob as shown in Fig. 2.3. Let VL =

{nL
1 , n

L
2 , ..., n

L
u}, VE = {nE

1 , n
E
2 , ..., n

E
v }, and VR = {nR

1 , n
R
2 , ..., n

R
w} be vehicles sets

in the left LL, emergency LE , and right LR lanes respectively. The emergency graph G

depicted in Fig. 2.3 enables the CH to determine the lateral maneuver of nE
1 toward the

least-risk lane, which is a lane with the minimum collision probability.

2.4.3 Link Quality-Based Maneuver Lane Selection

Considering the collision risk events (nL
1 ⊗nE

1 ), (n
L
2 ⊗nL

1 ), ..., (nL
u ⊗nL

u−1), respectively,

for children nL
1 , n

L
2 , n

L
3 , ..., n

L
u to collide with their parents nE

1 , n
L
1 , n

L
2 , ..., n

L
u−1, let their

corresponding probabilities be p1, p2, ..., pu. Let the events (nR
1 ⊗ nE

1 ), (n
R
2 ⊗ nR

1 ), ...,
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Algorithm 1 Determine Emergency Maneuver Lane
1: function DETERMINE MANEUVER LANE(G = V, E) ▷ G is the graph constructed by a set of

vehicles V where each vehicle is identified by its position and speed
2: np ← nE

1 ▷ initialize the parent node np to the vehicle nE
1 most risky to collide with nob

3: for each vertex v in Vnp do ▷ Vnp is the vertexes set of np’s children
4: if nc ̸= null then ▷ Compute the edge cost when the current vertex has a predecessor
5: Tc ← Compute T ime To Collision(nc, np)
6: Pc,p ← Compute Probability(Tc)
7: nc.p ← Pc,p ▷ Assign the collision probability as the metric of each graph edge cost
8: end if
9: end for

10: Lx ← 0 ▷ Candidate maneuver lane index which varies from 0 to 2 for a three-lane road segment
11: Qlane ← 0 ▷ Maneuvers toward the lane which has the greatest value of lane quality Qlane

12: for each lane l in L do ▷ L is a set of road lanes and check the neighboring lanes of the defected
lane that may be two elements (right and left lanes), or only one lane side

13: Ql ← Calculate Lane Quality(V)
14: if Qlane < Ql then
15: Qlane ← Ql

16: Lx ← l
17: end if
18: end for
19: return Lx

20: end function

(nE
w−1 ⊗ nR

w), respectively, for children nR
1 , n

R
2 , n

R
3 , ..., n

R
w to collide with their parents

be nE
1 , n

R
1 , n

R
2 , ..., n

R
w−1 and let their corresponding probabilities be p′1, p

′
2, ..., p

′
w. The nE

1

maneuvers toward a lane with better quality. Let the safe probability qi of a vehicle nc

driving toward another vehicle np be

qi = 1− pi, (2.11)

where pi is the collision probability of event np ⊗ nc. Consequently, we deduce the safe

lane quality of every lane of the road.

Definition 2.4.1 (Safe Lane Quality). Let the Safe Lane Quality SLx of a given road lane

Lx be a lane metric that indicates the state of lane safety during the emergency driving

decision.
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The safe lane quality of the left lane will be computed as follows:

SL =
u∏

i=1

qi, (2.12)

and the safe lane quality towards the right lane is computed as:

SR =
w∏
i=1

q′i, (2.13)

where qi is the safe probability for np and nc in the left lane, and q′i is the safe probability

for np and nc in the right lane.

An nE
1 ’s collision avoidance maneuver follows the algorithm 1. Line 2 of Algorithm 1

initializes the parent node with nE
1 . The while loop in lines 3-9 assesses the risks of the

graph G nodes with the parent-child relationship. Lines 4-8 calculate the collision risks

among the adjacent vertices, and then assign a risk cost to the edge (nc, np) in terms of

collision probability according to (2.10). Lines 10-11 initialize the maneuver safe lane

cost, and nE
1 should maneuver to the lane with maximal safety. Lines 2-18 determine and

compare lane qualities to choose the best lane. nE
1 will steer toward the lane returned by

line 19.

Given the safe lane qualities SL and SR in the left and right lanes, respectively, the

decision of the lane (denoted as L∗
x) for maneuvering emergency vehicles in adjacent

lanes is computed as follows:

L∗
x ← max

Lx∈{L,E,R}
(SL, SE, SR). (2.14)

Calculating an emergency vehicle’s maneuvers is time-critical. The complexity of the

CNP maneuver planning algorithm isO(Nl). This complexity increases with the number

of vehicles N driving on the defective road and the number of lanes l. To remedy this, we

make a trade-off between the optimal risk assessment and the assessment time.
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Figure 2.6: Expansions of the emergency vehicle e1 maneuver effect on the maneuver
lane Ll pre-maneuver driving vehicles.

Fig. 2.6 illustrates a scenario for lane change of an nE
1 avoiding collision with nob.

Considering it maneuvers towards the left lane, Fig. 2.6 shows possible scenarios that

may arise.

• In Fig. 2.6(a), nE
1 bypasses nob without affecting the trajectory planning of exist-

ing vehicles on the maneuver lane. This often happens on roads with low vehicle

density.

• In Fig. 2.6(b), nE
1 bypasses nob by affecting only the trajectory of its adjacent vehi-

cles. This typically happens when vehicle nL
1 needs to either accelerate, decelerate,

or change lane in order to create enough space for nE
1 to avoid an accident.

• In Fig. 2.6(c), nE
1 affects the trajectories of multiple adjacent vehicles when bypass-

ing nob.
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The following section will discuss in detail how the CNP plans emergency paths for

vehicles.

2.4.4 Emergency Maneuver

Emergency Path

Vehicles are sequentially maneuvered to avoid accidents in the road. Sequentially within

the maneuver lane, CNP assesses the collision risk to make sure that an emergency ve-

hicle nem will safely access the lane without degrading the safety of the existing driving

vehicles. CNP handles emergency driving, starting with the closest vehicle to the obstacle

toward the rear vehicles. CNP defines the timely maneuver path of nem from its contour

area, in a way that guarantees the other vehicles’ safety. Please refer to Appendix A

for the detailed path maneuver. Vehicles are laterally maneuvered to avoid any possible

collisions with an obstacle nob. Longitudinal changes are only made when lateral maneu-

vers are not feasible toward other lanes. In the case of a reckless cut-in maneuver, our

CNP mechanism will enable a vehicle to identify such an obstacle and quickly broadcast

it among the driving vehicles, thus creating a preparedness to react to it. We prioritize

the maneuver by changing lanes to enable vehicles to keep on their trajectories despite

the obstacle in the road. However, for non-maneuverable vehicles, we enable vehicles to

break or collide with as little energy as possible to limit damage.

Collision strength minimization

For the unavoidable collision situation, a collision strength minimization mechanism is

needed to minimize the energy transfer between the colliding vehicles, thus reducing

damage. The severity of a collision is proportional to the masses of the two colliding

vehicles and their corresponding speeds. Assuming that an emergency vehicle nem with
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speed vem and mass mem collides with an obstacle nob with speed vob and mass mob, the

collision strength calculation is made using their Equivalent Energy Speed (EES) [33]

calculated according to (2.8). The derivation of the collision strength minimization can

be found in Appendix A.1.2.

Up to now, we have described in detail the theoretical mechanism of the CNP. In the

next section, we will explore the performance evaluation.

2.5 Performance Evaluation and Simulation Results

This section evaluates the performance of the CNP risk assessment mechanism. It com-

pares the performance of CNP with other communication mechanisms in terms of com-

munication overhead. It evaluates the CNP safety mechanism performance in terms of

collision risk reductions. It assesses the collision mitigation by the equivalent energy

speed and the number of colliding vehicles. We carried out a simulation implementation

to evaluate CNP performance.

2.5.1 Simulation Setup

To be able to evaluate the correctness and efficiency of this scheme, we conducted a

simulation with the simulation of urban mobility (SUMO) [36] and OMNeT++ simula-

tion framework [37]. We made an urban mobility simulation where multiple vehicles

are traversing a road and exchanging mobility information for safety purposes. With

OMNeT++, we simulated CNP centralized network communication. Vehicles exchange

the Emergency Context Messages (ECM) as WAVE Short Messages (WSM) within an

IEEE.11-OCB enabled network simulation environment. Table 2.1 lists the simulation

configuration parameters.
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Table 2.1: Simulation Configuration

Parameters Description

1. Road network 2 km road segment from entrance intersection i
through exit intersection j.

2. Lambda λ Vehicle injection rate is from 0.2 ∼ 0.7.
3. Driving Speed (v) v = 20 ∼ 120 km/h.
4. Acceleration Vehicle acceleration a ranges [a = −5 ∼ 5]m/s2.
5. Acceleration Error ϵ = −1 ∼ 1 meters per second square.
6. ECM Transmission Rate Frequency of safety information transmission. The

default is 10 packets per second.

To allow SUMO to meet the demands of the CNP mechanism, we modified the

SL2015 [38] lane changing mechanism to comply with the coordinated maneuver mech-

anism. We extended Krauss’ car following model and SUMO lane changing strategy that

enables both the collisions to occur when not avoided. Through a communication strategy

in our proposal, vehicles get informed of the existence of obstacles and can preemptively

maneuver prior to reaching a high collision risk.

2.5.2 Performance Parameters and Metrics

The evaluation of this mechanism is based on the following evaluation settings.

• Parameters: The parameters for evaluation are: the impact of (i) vehicle injection

rate (λ), (ii) maximum driving speed, and (iii) acceleration.

• Metrics: The metrics for evaluation are: the communication overhead to measure

the communication performance, the collision probability to measure collision risk,

the number of collisions, and the collision equivalent energy speed as metrics for

collision strengths.
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• Baselines: We compare CNP with legacy situational awareness, which are sensor-

based approaches (e.g., LIDAR), a collision avoidance (CA) based [29], and a net-

worked approach (e.g., NCAS [22]). Unlike CNP and NCAS, the sensor detects

the situation only in the Line-of-collision (LOC) of vehicles.

To test the performance of the CNP, we use a road segment with three lanes. Our

simulation results use a 95% confidence interval.

2.5.3 Simulation Results
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Figure 2.7: Impact of the number of considered hops on the lane quality.
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Figure 2.8: Impact of CNP on communication overhead.
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This section investigates the safe lane quality (mentioned as lane quality) of the CNP,

which is defined by Definition 2.4.1, by measuring the impact of the number of hops that

were taken into account in the CNP’s risk assessment calculation on the lane quality. To

determine the quality of the lane driving, we evaluate the impact of the hop number on

collision probability, considering the different number of hops in the lane. First, consider

only vehicles within the LOC of nE
1 , and then consider two hops away from nE

1 , and then

three hops away, and so on.

Fig. 2.7a shows that for both the vehicle injection rates, the risk of collision is high

if the CNP assesses the risk only to its neighbors. The greater the number of vehicles

in the lane that are considered by the risk assessment is, the lower the risk of collision

is. Similarly, as shown in Fig. 2.7b, considering a small number of vehicles in the CNP

risk assessment will result in poor safe lane quality. Higher injection rates (e.g., λ = 1)

result in poorer safe lane quality as road congestion increases. Assessing up to 3 hops can

ensure adequate safe lane quality and less complex calculations. This gives a collision

probability equivalent to 0.15 for λ = 1 and one equivalent to 0.11 for λ = 0.5. Their

safe lane qualities are 0.13 and 0.5, respectively, which is safe enough to limit the risk of

a chain of collisions.

Communication Control Overhead

Both CNP and NCAS are communication-based mechanisms to avoid crashes in vehicu-

lar networks. Unlike NCAS, CNP uses a coordinated communication protocol, and CH

is the orchestrator of the remaining CMs’ maneuvers. Fig. 2.8a shows the evaluation of

communication overhead in vehicular networks wherein vehicles drive at 80km/h and

are injected at an injection rate λ ∈ [0.2 0.7]. The results show that CNP reduces the

communication overhead caused by NCAS from 15% to 60%. Fig. 2.8b shows an over-

head comparison figure where vehicles drive with maximum speeds varying from 20 to
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120km/h while maintaining an injection rate of 0.6. The results shows that CNP reduces

the overhead caused by the NCAS communication control by up to 60%.

Impact of the Vehicles Injection Rate λ

This section investigates the impact of vehicle injection rate λ on the overall CNP per-

formance compared with the baselines. It is seen that CNP reduces the risks of vehicles

colliding with an obstacle. Fig. 2.9a shows that over time, on average, the risk of collid-

ing either with obstacles or other vehicles in CNP is always the smallest. For unavoidable

crashes, Fig. 2.9b shows that CNP has the smallest number of collisions at all injection

rates. At higher injection rates, the number of sensor-based collisions in the presence of

obstacles will be greater than the collisions found with both communication mechanisms

(i.e., CNP and NCAS). Another factor that measures the nature of collisions is the energy

transfer between collision nodes (including vehicles and obstacles), which is measured

by EES.

Fig. 2.9c shows that in most cases, the cumulative energy when CNP is applied is

lower than that found only by relying on the sensor-based approach (Sensor) and equiva-

lent to the benefits of NCAS. The smaller the EES, the lighter the collision which reduces

the accident casualties. As shown in Fig. 2.9, the overall results indicate that CNP out-

performs the sensor-based approach on all levels of tested injection rates.

Impact of Speed

To investigate the impact of speed, we set different speed limits in the range from 20km/h

to 120km/h and fixed the injection rate to 0.6, and tested the behavior of CNP in com-

parison with the baselines. Fig. 2.10 shows the evaluation of collision risks when there

is an obstacle on the road. For all speeds, the CNP outperforms the sensor and NCAS

approaches in terms of the three metrics, such as collision probability, the number of col-
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Figure 2.9: Impact of injection rate (λ).

 0

 0.02

 0.04

 0.06

 0.08

 20  40  60  80  100  120

Speed (km/h)

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty CNP NCAS

 0.2

 0.4

 0.6

 0.8

 1

C
o
lli

s
io

n
 P

ro
b
a
b
ili

ty

Sensor CA

(a) Average Collision Probability

 0

 1

 2

 3

20 40 60 80 100
120

N
u
m

b
e
r 

o
f 
C

o
lli

s
io

n
s

Speed (km/h)

 10

 20

 30

N
u
m

b
e
r 

o
f 
C

o
lli

s
io

n
s

CNP
Sensor
CA
NCAS

(b) Number of Collisions

 0

 1

 2

 3

20 40 60 80 100
120

C
o
lli

s
io

n
 S

tr
e
n
g
th

Speed (km/h)

 15

 30

 45

 60

C
o
lli

s
io

n
 S

tr
e
n
g
th

CNP
Sensor
CA
NCAS

(c) Collisions and their strengths

Figure 2.10: Impact of speed.
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Figure 2.11: Impact of acceleration.

lisions, and collision strength. The collision probability with CNP is 5% less than NCAS,

while it grows to 85% of the sensor-based approach as depicted by Fig. 2.10a. On av-

erage, CNP reduces 5% of the chances of collisions of NCAS, and 80% of those of the

sensor-based risk assessment.

Fig. 2.10b shows that CNP outperforms the sensor-based approach in the reduction

of the number of possible collisions. At all speeds, CNP has fewer or the same number

of vehicle collisions compared with the NCAS, and much fewer than the sensor-based

approach. For speeds greater than 60km/h, the number of possible collisions when using

the sensor risk assessment is much higher than those of the CNP and NCAS, showing that

network-based risk assessments have better performance. CNP has the lightest collisions

compared to the baseline as shown in Fig 2.10c.

Impact of Acceleration

We investigated the impact of acceleration by testing accelerations that vary from 1m/s2

to 5m/s2. The results in Fig. 2.11 show that the lower acceleration leads to higher safety.

That is, the safety weakens with the increase of acceleration. For all the accelerations

tested, CNP outperforms the other compared risk assessment methods.
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2.5.4 Discussion

The communication protocol in CNP was simulated according to the 802.11p standard.

This protocol needs the vehicles to respond to the driving environments in a timely man-

ner and to handle complex driving functions. For this to be possible, a powerful compu-

tational system capacity that enables vehicles to collaborate with each other is required.

The standardization of 802.11p and 3GPP has substantially improved the robustness

and reliability of vehicular networks, thus allowing them to communicate with each other

without an infrastructure. However, a limited processing speed would lead to inaccurate

decisions. Intel Corp. estimates that approximately 1 GB of data needs to be processed

each second in the car for collaborative driving [39]. Vehicles with graphics processing

units (GPUs) for computation acceleration can handle such cognitive processing loads

efficiently.

2.6 Conclusion

This chapter introduced a context-aware navigation protocol (called CNP) to enhance

the driving safety of vehicles moving in urban roads. The CNP’s collision avoidance

feature allows vehicles to drive safely in the presence of obstacles or accidents in the road

by perceiving the situation and determining safe paths to follow. If a collision occurs,

collision mitigation minimizes any damage. The simulation results have shown that CNP

outperforms the sensor-based approach in reducing the risks of collisions, the number of

collisions, and the strength of collisions.

As future work, we will enhance our collision probability computation, considering

the reaction time of a vehicle. Also, we will implement and test this CNP protocol on real

cars to improve its accuracy and usability for safe driving. We will also test the impact of

the CNP on the overall trajectory performance of the driving vehicles as another way to

32



test and improve the navigation efficiency.
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Chapter 3

CANA: Collision-Avoidance Navigation

Algorithm for UAV Flying Networks

with Heavy Traffic

The advancements in vehicular cyber-physical systems (V-CPSs) have enabled several

studies on Unmanned Aerial Vehicle (UAVs) applications. To list a few, UAVs have been

proposed to provide services in the courier delivery industry, surveillance and monitor-

ing applications, disaster management, and cinematography. Multiple UAVs flying in the

same airspace necessitate a seamless coordinated navigation to avoid mid-air collisions.

It is important to study the coordinated navigation approaches that enable planning, track-

ing, and updating the mission path in a flying ad hoc network. This chapter proposes a

collision-avoidance navigation algorithm (CANA) for UAV flying networks with heavy-

traffic. It proposes an autonomous swarm-based UAV trajectory planning that utilizes the

sensing and network facilities of V-CPS to guarantee the safety of flying UAVs.
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3.1 Introduction

Unmanned Aerial Vehicles (UAVs) have recently experienced rapid advancements, and

they are increasingly popular for use in various applications. Many recent studies in this

area have been primarily focused on mission-oriented UAVs for applications such as pa-

trolling, recording, surveillance, and inspections; parcel delivery; disaster management

for prediction, assessment, and response; and air taxi called Urban Air Mobility (UAM),

which is expected to revolutionize urban transportation in the future [40]. The various

benefits of UAVs, such as their speed, flexibility, and size, have led researchers to pro-

pose their use in various applications. The forthcoming expansion of UAV applications

will lead to the commercialization of various UAV services. As a result, many UAVs

with different purposes will be flying in the sky [41]. Multiple UAVs flying in the same

airspace with the same mission are considered to be homogeneous UAVs. On the other

hand, UAVs flying in the same airspace with different mission purposes are considered to

be heterogeneous UAVs. Both homogeneous and heterogeneous UAVs need to cooperate

for efficient navigation in shared airspace.

Recent studies have achieved technological progress in the Flying Ad Hoc Networks

(FANET), which promote cooperation among UAVs [42]. UAV networks like FANET

can enable effective coordination and communication in a multi-UAV environment [43].

Communications in UAV networks can be categorized into air-to-air communication and

air-to-ground communication [44]. In air-to-air communication, UAVs communicate

among themselves, which is a means for decentralized UAV coordination mechanisms [45].

Besides, air-to-ground communication allows a Ground Control Center (GCC) and UAVs

to communicate, enabling the centralized UAV coordination mechanisms [44]. UAV sen-

sors (e.g., cameras, Light Detection and Ranging (LIDAR)) and communication devices

for UAVs are important for awareness in flying environments [46, 47]. Network-enabled
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(b) Multi-layered flights

Figure 3.1: Architecture of context-aware navigation model for a heavy traffic UAV
network.

swarm-based collision avoidance mechanisms make it possible to avoid collision in con-

gested airspace [48].

Collision avoidance methods include both the centralized mechanisms, where a cen-

tral device (i.e., GCC) decides the paths of flying nodes [44, 49], and the decentralized

mechanisms where all flying nodes are responsible for the computation of their safe

paths [45, 48]. A typical centralized mechanism is a natural multi-modal communication

method proposed [49], that enables a single system operator to supervise and orchestrate

a set of UAVs involved in the rescue missions. The central device performs communica-

tion data fusion and bridges inter-UAV communication. The decentralized mechanisms

include a multi-objective pigeon-inspired optimization [45] and distributed census con-

trol [48]. These methods present gaps in achieving realistic trajectory scheduling and

optimization controls necessary to respond to a complex environment. Delays caused

by the centralized inspection and monitoring of the airspace situations do hinder timely

safety responses and the efficiency of the mission [44]. On the other hand, decentralized

airspace awareness can be weakened by the limitation of UAV sensors’ line-of-sight and

computational capacity [50].

Thus, a system that leverages centralized and decentralized awareness will suitably

36



address the safety challenges in a shared airspace. Cooperative controls are time-critical

operations that necessitate using a cost-effective control system. Such controls and plan-

ning should be optimized to ensure successful mission completion even within a complex

aerial mobility environment.

We propose a Collision-Avoidance Navigation Algorithm (CANA) that autonomously

guarantees collision-free flights in a heavy-traffic UAV network illustrated in Fig. 3.1a.

It uses a 5G-equipped UAV network architecture that facilitates lightweight sensing in-

formation shared among airspace nodes. CANA design involves multiple-layered flights

in the airspace in which UAVs fly at different heights as depicted in Fig. 3.1b. Unlike a

3D map proposed in [51] where its multiple-layered approach allows UAVs only to cross

from one layer to another in fixed path segments, CANA provides a scalable and flexible

approach for UAV layer crossings while preserving the safety of the UAV network. To

achieve safe aerial traffic, we modeled layers with virtual aerial roadways made of virtual

lanes and virtual intersections in which UAVs fly toward the destination of their mission

as depicted in Fig. 3.2a. When a UAV reaches a mission destination, it lands by crossing

layers. Fig. 3.2b depicts a UAV landing process in which CANA determines a sequence

of safe voxels that cannot be used by any other UAV simultaneously. The system calcu-

lates each UAV’s flight kinematics (i.e., speed and direction) by ensuring collision-free

air mobility with minimal cost through trajectory optimization to make knowledge-based

collision-free flight decisions.

In this chapter, we formulate a collision avoidance algorithm for heavy-traffic UAV

networks as an optimization problem. Our CANA uses heuristic solutions with accept-

able approximations to reduce the complexity of the collision-avoidance optimization for

UAVs. Specifically, the major contributions of this work are as follows:

• We design a coordinated UAV swarming system to plan safe UAV flight trajectories.

It is an autonomous control system that models coordinated collision avoidance of
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UAVs via a 5G V2X communication in a UAV network (see Section 3.4).

• We design a collision-free knowledge-based heterogeneous UAV navigation through

3D real time collision risk assessment. We develop coordinated flights in ground-

road-like virtual aerial lanes and intersections in which UAVs can switch directions

at the same heights or move toward higher or lower altitudes to avoid collisions (see

Section 3.4).

• We formulate the collision avoidance process as an optimization problem, and solve

it using heuristic solutions that achieve improved performances (see Section 3.4).

• We evaluate our CANA through simulation to demonstrate its efficiency in detect-

ing and assessing obstacles appearing in the airspace with the smallest risk of col-

lision compared to the baselines [50, 47]. The results show that the CANA reduces

the control overhead by up to 66.6% compared with state-of-the-art collision avoid-

ance schemes [47] while satisfying the safety constraints (see Section 3.5).

Note that this chapter extends the preliminary work presented in our previous paper [15].

The rest of this chapter is organized as follows. Section 3.2 explains related work.

We specify a problem formulation for heavy-traffic UAV networks and centralized UAV

systems in Section 3.3. A description of the autonomous UAV navigation system design

and the collision avoidance algorithms is detailed in Section 3.4. Section 3.5 presents the

performance evaluation of our collision avoidance algorithm and baselines. Section 3.6

concludes this chapter while providing future work directions.

3.2 Related Work

This section summarizes the recent work that has been conducted aiming at achieving

safe flights in UAV networks.
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Figure 3.2: Sky road architecture for an aerial UAV navigation.

Recent studies have proposed several safety-preserving methods that can be used to

ensure safe UAV mission planning and controls. They rely on standard flight planning

algorithms such as A∗ [52, 53], Bat Algorithm (BA) [54], and spline search [55], which

are used to obtain safer routes. Two categories can be identified among these methods:

(1) centralized UAV controls [53, 56, 46] and (2) decentralized UAV controls [52, 54, 57].

In centralized UAV control, a central device such as the Ground Control Center (GCC)

defines the flight controls followed by flying UAVs. On the other hand, for decentralized

UAV controls, all nodes in the UAV network participate in the definition of their safe flight

paths. A centralized strategy for moving a swarm of autonomous UAVs was proposed

to accomplish a specific task by considering trajectory calculation and collision avoid-

ance [46]. A decentralized prioritized algorithm that combines the A∗ algorithm with co-

ordination has been proposed to enable collision-free mission planning [52]. One study

suggested a method that involves improving the bat algorithm to adapt three-dimensional

(3D) flight path planning for UAVs [54]. To obtain safe motion, boundary-based risk

assessments are used [57]. Further cooperation among UAVs is possible via FANET to

advance the airspace perception and response [58].

A swarming strategy using a distributed collaborative search of multiple UAVs has
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also been introduced for scalable and efficient cooperation in a complex UAV flying en-

vironment [56]. Cooperative tracking of formed UAV groups has been studied to ensure

awareness of the dynamic environment [59]. Another study has proposed a communication-

aware path planning method [53] that also involves A∗ variants to improve the quality

of UAVs’ path planning. A collaborative multi-UAV-assisted system proposed in [60]

uses the joint optimization of UAVs’ trajectory planning to improve the task offload-

ing in a multiple-UAV network. Aside from these environmental perception systems, a

couple of other methods for avoiding collisions in a UAV network have also been pro-

posed [61, 62, 63].

For successful UAV control, reliable Conflict Detection and Resolution (CDR) should

be implemented. Avoiding middle-air collisions can be achieved through both pre-flight

and in-flight collision detection and avoidance [61, 62]. Four control approaches are com-

monly used: a rule-based control approach, a deterministic optimal control approach, a

stochastic optimal control approach, and a protocol-based control approach [63]. The

rule-based approach is a decentralized approach, where each UAV decides its maneu-

ver following pre-described rule-based policies. The deterministic optimal control ap-

proach determines maneuvers by minimizing an objective function of an optimal control

problem. The stochastic approach considers a CDR as a stochastic problem and con-

siders the trajectory results from problem optimizations. The protocol-based approach

defines a protocol that all UAVs in the airspace must follow to guarantee the safety of the

multi-UAV system. All these methods have their drawbacks. While the rule-based and

protocol-based approaches are commonly known to be unsuitable for avoiding collisions

when unexpected events occur, deterministic and stochastic optimization also suffer from

heavy computational load. CANA defines a stochastic approach with heuristic approxi-

mation to relax its computational cost.

Airspace awareness information sharing among UAV network nodes significantly en-
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hances the vehicular safety mechanisms[42, 51]. A Context-aware Navigation Protocol

(CNP) in [12] proposes a guiding strategy for vehicles in road networks for collision risks.

Based on the intuitive metrics of lane quality, CNP successfully guides the maneuvering

of vehicles in and out of the line-of-sight of obstacles on the road. However, this method-

ology is not able to handle 3D UAV movement scenarios when an obstacle appears in

the aerial environment. Carspeak has designed a communication system that enables cars

to access 3D stream data from other vehicles in the manner in which they access their

onboard sensor data [64]. Using an octree data structure, a vehicle can query and access

sensor information for a specific region. Meanwhile, the Mixed Integer Linear Program-

ming (MILP) approach proposed in [51] proposes a 3D map wherein UAVs can navigate

while avoiding the risk of collisions. Although this method involves a multi-layered ap-

proach, UAVs can only cross from one layer to another in fixed path segments. CANA

provides a more scalable and flexible approach in a 3D airspace that allows UAVs to cross

from one layer to another without worsening the safety of UAVs that were already in that

layer. The CANA scheme successfully handles the complexity of air mobility by using

appropriate risk assessment metrics and a navigation strategy, and preserves the mission

efficiency and the safety of UAVs.

3.3 Problem Formulation

In this work, we intend to design an aerial navigation mechanism that accommodates

collision-free UAV heavy traffic, suitable for shared airspace. A UAV departs from its

base station while aiming at a specific objective called a mission, such as search, rescue,

and parcel delivery. We combine UAV mission and path planning strategies for a safe

UAV swarm operation by airspace awareness and collision avoidance decision methods.

This section describes a heavy-traffic UAV network, a navigation framework, a problem
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targeted by our design, and the assumptions we considered.

3.3.1 Heavy-Traffic UAV Network Navigation Description

A heavy-traffic UAV network consists of n UAVs that can be dispatched to m mission

bases while operating in the same airspace toward k mission destinations, as illustrated

in Fig. 3.1a. UAVs depart from a set of mission bases B = {bst1, bst2, ..., bstm} to fly

toward a set of destinations Dst = {dst1, dst2, ..., dstk}. An aerial navigation system

defines a connected graph G = (V , E) that is constructed by a vertex set V of m mission

bases and k mission destinations such that |V| = m + k. An edge set E is made of all

pairs of mission bases and mission destinations, where the edge cost in E is determined

by considering the link cost (e.g., traversing delay, collision probability, and congestion

level).

A framework of environment awareness for safe navigation in UAV networks is de-

scribed in Fig. 3.3. It uses UAV network context awareness through communications

over 5G to define a safe UAV trajectory in the steps described below. First, a perception

step deals with information acquisition by UAV sensors in their sensing range. Second, a

decision-making step assesses the sensed information to identify possible collision risks.

Third, a control step reflects the decision and updates their flight plans for safer trajecto-

ries. Lastly, the awareness message exchange step disseminates UAV mobility informa-

tion (e.g., speed, position, and direction) and flight control information (e.g., acceleration)

through lightweight information sharing over UAV networks.

A UAV departs from a mission base and traverses through its assigned destinations.

During its flight, several other UAVs are concurrently flying in the same airspace, thereby

forming a FANET as shown in Fig. 3.1a. The flying information is shared among UAVs

via air-to-air communication and to GCC through air-to-ground communication, enabling

it to keep updated on the UAVs’ mobility changes. Once a UAV has completed its mission,
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Figure 3.3: An aerial environment awareness framework architecture.

it returns to its base and waits for its next mission.

3.3.2 UAV Navigation Problem Formulation

In this section, we describe the UAV navigation problem we intend to address by formu-

lating a set of corresponding equations and functions, as follows:

Problem Definition

Let a set D = {n1, n2, ..., nn} be a set of nodes that are currently flying in the airspace

toward their intended destinations at a particular time t. The state st of a given UAV ni at

that particular time t can be defined as

st =
[
xt yt zt ϕt θt ψt

]T
, (3.1)

where (xt, yt, zt) define its position in 3D space, and where (ϕt, θt, ψt) be the roll, pitch,

and yaw angles, respectively. The trajectory control input for its next movement is defined
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as

ut =
[
ut vt wt pt qt rt

]T
, (3.2)

where (ut, vt, wt) are the UAV’s forward, side-way, and vertical velocities, respectively,

and (pt, qt, rt) are its roll, pitch, and yaw change rates, respectively. Within a continuous

time, the UAV control dynamics system can be expressed as

ṡt = f(st, ut) + wt,

wt ∼ N(0, σ2
t ),

(3.3)

where f(st, ut) is the dynamics equation of the UAV system for time t, and wt is a Gaus-

sian noise wt, with a variance σ2
t for time t [65]. The wt expresses the UAV motion

control disturbances such as the actuation delay. Kalman filter is a predictive model that

can accurately estimate the state of the UAV. Given a UAV state estimate at time t − 1,

ŝt−1 this model predicts its a priori state estimate at time t as

ŝt = Ft−1ŝt−1 +Bt−1ut−1, (3.4)

where Ft−1 expresses the state transition matrix that propagates a UAV state from t − 1

to t and Bt−1 is the control input matrix. The predicted error covariance matrix is

Pt−1 = Ft−1Pt−1F
⊤
t−1 +Qt−1, (3.5)

where Pt−1 is a priori error covariance matrix and Qt−1 is the error covariance matrix. A

posteriori estimate covariance matrix P at time t is expressed as

Pt = (I −KtH)Pt−1, (3.6)

where I is the identity matrix, K is the Kalman gain at time t and H is the measurement

matrix. K is derived from

K = P̂tH
⊤(HP̂t ∗H⊤ +R)−1, (3.7)
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Figure 3.4: Illustration of safety distance for adjacent UAVs.

where P̂t is a priori estimate covariance matrix at time t, H⊤ is the transpose of the

measurement matrix, and R is the covariance matrix of observation noise. Having the

measurement state matrix mt, the next UAV state st+1 can be expressed as

st+1 = st +K(mt −Hst). (3.8)

Collisions occur when two or more UAVs attempt to use the same space position

concurrently. For two flying UAVs, as shown in Fig. 3.4, there is a minimum safe gap

that must be satisfied to ensure the safest flights. This gap is made of the UAV’s body

length li, the navigation error (i.e., GPS error) lϵ, and the minimum safety distance lmin,

ultimately expressing the safe distance ssafe defined as

ssafe = li + lmin + lϵ. (3.9)

Note that a navigation error is an uncertainty margin that is fixed to limit the possibility

of physical collision. A UAV collision is likely to happen when the distance between

adjacent UAVs is less than ssafe.

Fig. 3.5 demonstrates a 3D graph structure that enables a determination of a collision-

free shortest path in aerial space. A control system can be used to coordinate UAV control
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Figure 3.5: A multi-dimensional structure for the End-to-End navigation path determina-
tion.

inputs in (3.2) by satisfying safety conditions to ensure collision-free flights by regulating

UAV flights with a 3D graph-based short path calculation.

Let D′ be a set of UAVs ready to enter the airspace. For new request nj ∈ D′, a safe

path Pnj
from bstj = pj1 to dstj = pjt needs to be computed.

Problem 3.3.1. A safe path planning problem: This consists of determining a path

Pnj
= {pj1, p

j
2, ..., p

j
t} for an entrant UAV nj in the airspace such that it will maintain

a safe gap with all UAVs flying in the same time during the entire path traversing time

samples vector ∆t = {t1, t2, ..., tt}.

For each UAV nj ∈ D′ with j < |D′|, the algorithm in this chapter will solve Prob-

lem 4.3.1 by defining its mission path planPnj
= {pj1, p

j
2, ..., p

j
t} such that

||pkj − pki || ≥ ssafe, for ∃nj ∈ D′, ∀ni ∈ D, and k ≤ t. (3.10)

Given a UAV nj ∈ D′, an ideal solution to Problem 4.3.1 defines its mission pathM∗
path

that maximizes the spatial inter-distance with each of the flying UAV ni ∈ D. It is
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expressed as

M∗
path ← max

∀ni∈D
min
nj , k
||pkj − pki ||. (3.11)

where ||pkj − pki || is the estimated spatial distance between UAVs ni and nj at a time

k ≤ t. The navigation goal is to solve Problem 4.3.1 while minimizing the cost and

limiting the complexity of the mechanism. This is expected to derive a safe solution to

the cost estimation problem.

Problem 3.3.2. Cost of a safe way: For safe waysMi of UAVs that have been computed

to avoid collisions with an obstacle in the aerial space (i.e., an uncontrollable UAV and

an unexpected object like a bird in UAV’s trajectory) in (3.10), the cost of each safe way

expresses the flight delay and/or increase in a travel distance compared to the original

path.

Let g(.) be a function that calculates a UAV’s temporal control inputs cost towards a

UAV’s trajectory path. The the path cost function CM is expresses as

CM = min
u

∫ t+∆t

t

g(s(t), u(t)) dt, (3.12)

where CM is dependent on the UAV’s temporal state s(t) in (3.1) and the control input

u(t) in (3.2).

Considering that the motion update of a UAV can affect the other UAVs’ mobility, the

cost which includes the cooperative motion of neighboring UAVs is illustrated as

CMcoop = min
ni,nj

∫ t+∆t

t

g(s1, s2, ..., sm) dt, (3.13)

where g(s1, s2, ..., sm) is a function that combines the interactions caused by the update

of a UAV ni to each state sj of another UAV nj . Therefore, the UAV nj mission is a set

of way-pointsM = {mj
1,m

j
2, ...,m

j
k} that the UAV will follow to accomplish its mission

such that

∀mj
t ∈M : di,j ≥ ssafe. (3.14)
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Figure 3.6: Volumetric path planning method.

Assumptions

The following assumptions were considered in our design of a heavy-traffic UAV network.

• Communication between UAVs and the GCC is based on a 5G or beyond 5G sys-

tem.

• Time synchronization of UAVs and the GCC is based on GPS time.

• UAVs in a heavy-traffic UAV network must be equipped with a GPS transceiver.

They must be able to fly freely in different directions, vertically and horizontally,

and hover in space.

• A UAV network is a 3D airspace in which multiple two-dimensional planes are

sliced spatially along the z-axis as shown in Fig. 3.2a.

• The arrival of UAVs in the heavy-traffic UAV network follows a Poisson distribu-

tion.

• To enable air-to-air and air-to-gound communication, each UAV operates in a half-

duplex mode, transmitting and receiving airspace environmental sensing data si-

multaneously.
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• For UAV flight safety efficiency, UAVs are assigned the flight layers that they must

use during the flight and which can be changed while landing or avoiding an emer-

gency event that might result in collisions.

In the next section, we will discuss how our CANA scheme assesses the flight collision

risks and deduces the proper flight trajectories for UAVs in the airspace.

3.4 System Design and Algorithms

The CANA design aims to ensure that UAVs may fly safely in shared airspace where they

have different mission purposes, which is called heterogeneous airspace. We achieve

this safety goal by detecting potentially unsafe flying incidents and quickly responding to

avoid collisions. This is achieved by a cooperative flight path calculation among UAVs

during the execution of their missions. This section discusses in detail the UAV navigation

algorithm and safety provisioning for use in a heavy-traffic UAV network environment.

3.4.1 Communication in UAV Flying Networks

The flying UAV network shown in Fig. 3.1a depicts an ultra-reliable cellular Vehicle-to-

Everything (C-V2X)-like flying network. It involves FANET and 5G cellular infrastruc-

ture. We advocate the use of a sensing mechanism that exploits the mobility informa-

tion obtained from the Vehicle-to-Infrastructure (V2I) (i.e., UAV-to-GCC) and Vehicle-

to-Vehicle (V2V) (i.e., UAV-to-UAV) communications over 5G. Our design follows a

User Equipment (UE)’s 5G V2X protocol stack (in terms of data plane in 5G) as shown

in Fig. 3.3. FANETs enable the UAV-to-UAV communication, allowing UAVs to interact

and exchange sensor information directly. The GCC interacts with UAVs in real time via

vehicle-to-infrastructure (V2I) (i.e., UAV-to-GCC) communication to deliver information
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about the airspace environment and traffic conditions to achieve safe flights. We adopt

the lightweight message exchange of the Cooperative Context Message (CCM) and the

Emergency Context Message (ECM) in [12] to achieve safety goals.

The cooperation of UAVs and GCC via communication enables periodic dissemi-

nation of aerial environment information via CCMs and control messages involving re-

actions via ECMs. 5G provides a stable backbone for communication with the GCC,

overcoming the limitations of purely ad-hoc networks by providing long-range commu-

nication to UAVs. The high bandwidth and low latency of the 5G network allow real time

control and data exchange, which is crucial for complex cooperative maneuvers. Fur-

thermore, 5G can facilitate communication between different FANETs operating in the

same area, enabling larger-scale coordination of multiple UAV clusters to realize the full

potential of cooperative UAV flights in diverse applications. The received awareness in-

formation serves to plan safe UAV missions. The details of communicating emergencies

in a UAV network are included in B.1.

3.4.2 UAV Mission Planning

CANA planning module assesses the trajectories states of a set D of UAVs currently

flying in the airspace to plan missions of a set D′ of UAVs ready to begin their flights.

The Algorithm 2 plans their collision-free trajectory paths to their assigned destinations.

This algorithm defines each UAV’s mission and calculates its way-point trajectory path.

This algorithm defines a function that computes the trajectories of each of a set of

awaiting queued UAVs D́. Lines 2-19 iterate through the UAVs and define each UAV’s

mission path P t
j . In defining the mission path, lines 3 and 4 initialize the mission path

by defining targeted destinations. Lines 5-19 define an addictive mission path planning

method using Dijkstra’s algorithm. For the number of UAVs |D́| planned for flights,

the total destinations involved in their missions M =
∑|D́|

i=1|Mi|. The computational
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Algorithm 2 Addictive Mission Path Planning Algorithm

1: function CALCULATE SAFE MISSION PATH(D′,D) ▷ D′ is a set of UAVs that are
currently waiting to fly in the controlled airspace, and D is a set of planned UAVs.

2: for each ni ∈ D′ do
3: curNode← getMissionBase(ni) ▷ Initialize the current node with ni’s the

mission base.
4: Mi ← Extract Next UAV Mission(ni,D) ▷ Define the destinations

involved in the next UAV mission.
5: while Mi ̸= ∅ do
6: Pi ← curNode ▷ Initialize the UAV ni’s mission path.
7: for each neighbor vk of curNode do
8: while Pi ̸= ∅ do
9: costk ← getEdgeCost() ▷ The edge cost is calculated according

to (3.13).
10: if costk < neighbors cost then
11: vk ← min(vk, vmin + costk) ▷ Update the cost to node vk.
12: if vk /∈ Pi then
13: Pi.ENQUEUE(vk)
14: end if
15: end if
16: end while
17: end for
18: end while
19: end for
20: end function

complexity of this algorithm to plan D́ UAVs is O(|D́|M)log|V|. Note |V| indicates the

total number of mission bases and mission destinations. This complexity increases with

the increase in the number of UAVs whose flights are to be planned in the airspace. An

appropriate 3D volumetric planning approach that provides a collision-free path to a UAV

in heterogeneous airspace is proposed in CANA in the next section.
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3.4.3 Volumetric Path Planning

The UAV carries out its mission by traversing through a sequence of waypoints ranging

from the mission base to the mission destination. Within a 3D environment, the UAV path

planning of heterogeneous missions is revealed to be complex. Our mechanism considers

airspace in a cubic form, as shown in Fig. 3.6.

The atomic cube that is large enough to be safely occupied by the largest UAV flying

in the airspace is called a voxel (i.e., cube). The size of a voxel is equivalent to ssafe

in (3.9). The airspace is subdivided into multiple equal-sized voxels, and each voxel can

only accommodate one UAV at an instant of time ti. A UAV path is defined as a sequence

of voxels, where the center of a voxel characterizes a UAV’s position in space, as shown

in Fig. 3.6a. We formulate a 3D voxel tree structure that the system will use to define the

UAV’s safe path. From a single voxel, the UAV moves to one of the horizontally or verti-

cally adjacent voxels, or hovers in the same voxel. For simplicity, the maximum number

of adjacent voxels is six. Note that a diagonal movement is not considered. Therefore, a

tree structure representation h : u → R6 defines the UAV’s next displacement, as shown

in Fig. 3.6b. During the landing (or takeoff) process or while avoiding an obstacle, a

UAV can fly from a higher to a lower layer or vice versa. Fig. 3.6c shows the motion

that was previously highlighted in Fig. 3.1b, thus demonstrating that UAVs are allowed

to fly from a given layer to another layer while ensuring the safety of each flight. The

decision to cross between two adjacent layers in this design follows knowledge-based

decision-making informed by risk assessments, which is discussed in the next subsection.

3.4.4 Risk Assessment Metrics in a Heavy-traffic UAV Network

Collision risks in a heterogeneous UAV network are measured using three combined met-

rics: (a) UAV link delay, which measures the traversing delay, (b) collision probability,
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and (c) UAV congestion metric, which indicates the congestion level of flight link. As

UAVs carry out their missions, the herein model assesses whether their trajectories can

overlap spatio-temporally or not. Collision probability examines the risk of collisions oc-

curring between the marginal space of neighboring UAVs. A metric that indicates the state

of lane safety in an aerial environment is the virtual lane quality decision. Therefore, the

congestion level assesses the future risk of collisions in the overall mission graph through

virtual lane quality. Fig. 3.7 shows the flying path of a UAV for its missions, consisting

of its start, intermediate destinations, and its end.

Fig. 3.7a illustrates a topology formed by mission bases, mission destinations, and

transit nodes (e.g., charging stations). The flexibility of the air mobility enables that

from any source (i.e., bstm and dstk), a UAV can reach any targeted mission base or

mission destination, thus resulting in a mesh-type graph. Given the flying UAVs missions,

Figs. 3.7b and 3.7c portray the end-to-end (E2E) paths from the mission bases bst1 and

bst2 until UAVs n1 and n2 accomplish their missions. The risk assessment ensures that

the UAV can safely achieve its assigned mission.

UAV Mission Delay

The GCC defines the mission waypoints of a given UAV ni according to its capacity (i.e.,

battery and weight capacity). Each mission, mk ∈ M, heads toward a set of destinations

that make the travel vertices set V , and its end-to-end (E2E) traversal path is made of |V |

destinations. For simplicity we assume that the travel delay di from a destination dsti ∈ V

to dsti+1 ∈ V is independent of the travel delay di−1 from dsti−1 ∈ V to dsti ∈ V . Then,

the mission E2E traversing delay is given as

E[Dmk
] =

k−1∑
i=1

E[di] =
k−1∑
i=1

µi, (3.15)
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(c) UAV n2 mission path

Figure 3.7: The flying path of UAVs for their missions.

V ar[Dmk
] =

k−1∑
i=1

V ar[di] =
k−1∑
i=1

σ2
i , (3.16)

whereE[di] is the expected travel delay, which is a Gamma distribution di ∼ Γ (κi, θi) [66],

parameter κi is the mean travel delay and θi is proportional to the V ar[di] and inversely

proportional E[di]. After the mission waypoints are defined, our algorithm defines the

mission path such that the UAV will take the smallest delay to travel while completing its

assigned task.
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Collision Probability

For a UAV to safely fly in a heavy-traffic UAV network, its travel path must be a solution

to Problem 4.3.1. The safe inter-UAV distance śsafe distance for the adjacent UAVs with

the same length is

śsafe = {2(li + lϵ)}+ lmin, (3.17)

where li is the UAV’s body length, lϵ is the navigation error (i.e., GPS error), and lmin is

the minimum safety distance.

The system proposed herein ensures that the inter-UAV distance di,j ≥ śsafe during

the entire mission. However, due to flight conditions, such as a need to fly to the transit

node (e.g., an energy charging station) or the existence of multiple arrivals at a mission

destination, the inter-distance of UAVs may get smaller than śsafe. We model a proba-

bilistic risk assessment in terms of the time-to-collision (Tc) of the adjacent UAVs. Note

that Tc ∈ [Tcmin, Tcmax] where Tcmin is the minimal maneuverable time Tc and Tcmax is

the maximal safety ensuring time Tc for two adjacent UAVs. Given two UAVs ni and nj ,

their probability of a collision event P (ni ⊗ nj) is computed as

P (ni ⊗ nj) =


1, if Tc ≤ Tcmin, (3.18a)

0, if Tc ≥ Tcmax, (3.18b)

Pni,nj
, otherwise, (3.18c)

where (3.18a) means that the UAV ni will certainly collide with the neighbor UAV nj , (3.18b)

implies that the UAV ni is safely flying away of UAV nj , and (3.18c) defines the relative

collision risk of the adjacent UAVs ni and nj , which is computed as

Pni,nj
= 1− Tc − Tcmin

Tcmax − Tcmin

. (3.19)
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Figure 3.8: Probabilistic risk assessment in a 3D environment.

Aerial Virtual Lane

Even though UAVs have the freedom of multi-directional movement and flexible displace-

ments, they can result in disastrous collisions if they are not controlled and coordinated.

The GCC guides UAVs with their aerial routes, namely, virtual lanes in this chapter, that

enable flexible control of UAVs. Fig. 3.1 describes the capability of aerial motion by fly-

ing in different horizontal layers, where each layer allows flights in different virtual lanes.

Fig. 3.8 depicts a typical probabilistic risk assessment graph for aerial virtual lanes. UAVs

from mission bases fly toward mission destinations in a versatile and efficient fashion that

enables controllability through our collision risk detection and collision avoidance algo-

rithm.

Let an obstacle node nob be detected in the airspace as illustrated in Fig. 3.8. A

directly concerned UAV nE
1 collision risk expressed in collision probability P (e1 ⊗O) is

calculated using (4.1b), defining the risk of nE
1 to collide with an obstacleO when it keeps

the current flying kinematics. When e1 is determined to be at collision risk, a decision

that defines its control input for its motion update is considered. This design considers nE
1

to maneuver toward one of five virtual lanes or to hover (i.e., keeping the current voxel),
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depending on their safety metric. Those lanes first include an upper lane (U ) representing

the movement toward the upper layer. Secondly, in the emergency layer, an emergency

UAV can maneuver toward the left lane (L), adjust (i.e., reduce) its speed in the current

emergency lane (E), or change direction to the right lane (R). Lastly, it can move to the

down layer, representing the down lane (D). The maneuvers include hovering, changing

the flying layer, or kinematics updates such as acceleration, deceleration, and direction

change according to a decision logic that meets both the requirements of safety and flight

performance.

Definition 3.4.1. Virtual-lane quality: Virtual-lane quality is a metric that indicates the

safety level of the route that a UAV will follow while avoiding collisions.

This metric extends the safe lane quality definition in [12] by accommodating 3D

motion freedom for UAVs. Considering a UAV’s next movement toward its neighboring

UAVs and collision probabilities p1, p2, ...pu, a safety probability denoted as qi given as

qi = 1− pi, (3.20)

where pi is the probability of a collision event (ni⊗ni−1). Considering a flying period ∆t,

pi expresses the risk that a UAV ni will collide with UAV ni−1 at flight time t ≤ ∆t. Given

a list of UAVs in the same direction with ni and their corresponding safety probabilities

{q1, q2, ..., qu}, we can deduce the safety quality. A virtual-lane quality SL is a lane metric

that indicates the safety measure of a specific virtual lane during the emergency flight

decision. Please refer to Appendix B.2 for safe lane quality computations details. The ni

path maneuver is expressed as

SL =
u∏

i=1

qi. (3.21)

After evaluating the safe lane qualities toward all possible maneuvers (i.e., five move-
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(b) Thief’s bag of Knapsack prob-
lem

Figure 3.9: Collision avoidance problem hardness.

ments) in the aerial environment, a target UAV flies toward the safest direction, denoted

as D∗
x, and given as

D∗
x ← max

Dx∈{L,E,R,U,D}
(SL, SE, SR, SU , SD). (3.22)

Section 3.4.5 details how a UAV minimizes collisions in high-risk airspace.

3.4.5 Collision Avoidance Algorithms

An optimal UAV flight is one that reduces the probability of position interference, thereby

maximizing the inter-UAV distances by facilitating the real-time flights of UAVs in the

shared airspace. This section illustrates the algorithms and optimizations that contribute

to optimal safe flights of UAVs.

UAV Collision Avoidance Problem Hardness

Given the multilayered airspace as illustrated in Fig. 3.1b, in which there is a potential col-

lision risk with an obstacle, the maneuver decision is obtained by solving Problem 4.3.1.
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Fig. 3.9 shows the maneuver definition hardness. Fig. 3.9a shows the complexity of UAV

nE
1 to define collision-free maneuvers while avoiding nob. We consider the airspace lanes

to be a thief’s bag made of five layers {BU,BL,BE,BR,BD} as shown in fig. 3.9b,

where BU equals the upper lane UL, BL equals the left lane LL, BE equals the emer-

gency lane EL, BR equals the right lane RL, and BD equals the down lane DL, respec-

tively. A knapsack problem [32], which consists of collecting different items in a thief’s

bag while maximizing the total collected items without exceeding the bag capacity, is a

well-known NP-complete problem. We demonstrate that the knapsack problem is a spe-

cial case of Problem 4.3.1. As the knapsack problem is an NP-complete problem, this

means that Problem 4.3.1 is also an NP-complete problem, indicating that it is therefore

infeasible to find its solution in polynomial time. The relaxation of Problem 4.3.1 through

heuristic approximation and optimization alleviates its computational load. The trajec-

tory planning and execution of many UAVs require extensive decision-making. Given the

flexibility of aerial motion planning, each UAV’s movement in the airspace represents an

obstacle that is to be avoided by the rest of the UAVs to ensure safe flights. A safe flight

path-finding decision is an NP-complete problem.

The procedure and mechanisms for solving the Problem 4.3.1 and algorithms for min-

imizing collision avoidance costs and the computation of flight speed and direction ad-

justments toward solutions for Problem 3.3.2 are described in Section 3.4.5.

Optimization Problem in Collision Avoidance

UAV collisions may occur when two or more different UAVs attempt to visit the same

space voxel simultaneously. By taking into account the UAV size li, navigation error lϵ

(i.e., GPS positioning error), and safety minimal gap (lmin), it can be determined that the

UAV ni will be in a collision when the following equation is satisfied.
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∃ nj ∈ D, j ≤ n & i ̸= j,

s.t. dni,nj
(pni

, pnj
, ṗni

, ṗnj
, θij) ≤ s′safe.

(3.23)

where D is a set of UAVs in a heavy-traffic UAV network, dni,nj
(.) define the inter-

distance of a pair of UAVs, pni
= (xi, yi, zi) is the airspace position of UAV ni, ṗni

is its

flight speed, and θij is the angle between the flight directions of two UAVs at time t.

The distances between UAVs must be greater than the safety distance to avoid col-

lisions between UAVs. We avoid collisions by defining the UAVs’ speeds and direction

angles to satisfy the following equation.

dni,nj
(pni

, pnj
, ṗni

, ṗnj
, θ′ni,nj

) > s′safe,

s.t. ∀ni, nj ∈ D, i ̸= j.
(3.24)

where ṗni
is the flight speed of UAV ni, and θ′ni,nj

is the changed angle between the flight

directions of UAV ni and nj . The CANA updates the flight speed and direction of UAVs

such that UAVs do not collide with each other while also minimizing the maneuver change

cost for collision avoidance. That means that, by knowing the set of UAVs’ positions P ,

the set of their speeds V , and the set of all angles between all pairs of UAVs Θ, the GCC

can solve the following optimization problem:

Maximize (V,Θ)

s.t. ∀ ni, nj ∈ D, ni ̸= nj,

p
i
, pj ∈ P, ṗni

, ṗnj
∈ V, (3.25)

dni,nj
(pi, pj, vi, vj, θi,j) ≥ s′safe,

where ṗni
and ṗnj

are the speeds of UAVs ni and nj , respectively. The above optimization

problem is non-linear, non-convex, and has too many variables. In particular, there are
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(b) Dynamic obstacle handling

Figure 3.10: Cluster-based emergency handling in aerial environment.

too many unnecessary operations taking into account speeds, directions, inter-distances,

and the maneuver costs of all maneuvered UAVs in UAV set D. Therefore, it is necessary

to appropriately divide the set of UAV D to reduce computational operations.

Collision Group

To reduce the unnecessary computation load of the optimization problem, this mechanism

handles the entire set of UAV D into multiple collision groups following their cluster
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Algorithm 3 UAV Safe Motion Planning
1: function CALCULATE SAFE NEXT MOVE(G,M,D) ▷ G is a

connected graph constructed by mission-based and mission destinations, andM is a
UAV’s planned mission destinations.

2: for each ni ∈ D do▷ Grouping the flying nodes based on their safety conditions.
3: if nc ̸= null then ▷ Compute the edge cost when the current vertex has a

predecessor.
4: Pc,p ← Compute Probability(Tc)
5: C ← Group UAV (Pc,p) ▷ Group UAVs based on their collision

probability.
6: end if
7: end for
8: Cdi.next ← Compute Destination Cost(di.next) ▷ Compute the flight cost of

the UAV toward the planned next destination.
9: for each vertex u ∈M do ▷ Evaluate the safety cost

of moving to every destination among the planned destinations based on their virtual
lane quality according to (4.14).

10: Cu ← Compute Destination Cost(u)
11: if Cu < Cdi.next then
12: di.next← u
13: end if
14: di+1 ← di.next
15: end for
16: C ← Update Collision Group(D)
17: M← DEQUEUE(di)
18: di ← di+1

return di ▷ Return the next destination the UAV will fly to.
19: end function

formation of nodes in Ad Hoc networks [31]. Each collision group satisfies the following:

∪
Cn∈C
Cn = D, ∩

Cn∈C
Cn = ϕ,

Cn = {(ni
c, n

j
c)| ni

c, n
j
c ∈ D,

∃t′ ∈ [0,∆t] : dni
c,n

j
c
< s′safe},

(3.26)

where ∆t is the maneuver time of an emergency UAV.
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Definition 3.4.2. Collision group: A set of UAVs C ⊂ D, C = {n1
c , n

2
c , ..., n

m
c } is a

collision group if ∀nk
c , n

l
c ∈ C, such that D(nk

c , n
l
c) ≤ s′safe.

A collision group is defined as a set of pairs of UAVs where the inter-distance is

less than or equal to the safety distance. To avoid the potential of collisions, UAVs are

organized into clusters where either the cluster Head (CH) or GCC solves the optimization

problem, and each cluster is treated as a collision group, thus reducing the computational

load. Fig. 3.10 shows an illustration of collision groups. An emergency event is shared

across the UAV network via lightweight message sharing.

The safety awareness is shared being a static obstacle (i.e., hovering obstacle) as

shown in Fig. 3.10a or a dynamic obstacle (i.e., dropping obstacle) as shown in Fig. 3.10b.

Static obstacle is handled within a single layer without affecting adjacent layers unless

needed for maneuvers. Besides, a dynamic obstacle affects the safety of all layers through

which they pass. Through UAV groups, the maneuver can be dealt with by a smaller num-

ber of UAVs, thus keeping the remaining UAV trajectories safe.

We classify UAV collision groups into three main categories, depending on how they

might be affected by an obstacle. Those categories are class1 UAVs with a risk of collid-

ing with obstacles, class2 UAVs likely to be affected by the maneuvers of class1 UAVs,

and class3 safe UAVs. The class1 category, which is shown by group Gr1 in Fig. 3.10,

consists of UAVs at the line of collision of the obstacle. This category is a zone of no

crossing, meaning that all flying UAVs with a trajectory crossing that spot have to de-

tour for collision risk avoidance. UAVs in that zone need to immediately evacuate toward

safer zones using various maneuvers. The class2 category consists of UAVs depicted by

groups Gr2 and Gr3 in Fig. 3.10, which are likely to be affected by the maneuvers of Gr1

UAVs. This group needs to keep their trajectories while carefully observing the motion

updates of other UAVs. Lastly, the class3 category, as depicted in groups Gr4 and Gr5 of

Fig. 3.10, consists of UAVs that are distant enough from the emergency and can therefore
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Figure 3.11: Collision avoidance by UAVs’ velocity change.

safely continue along their pre-planned motion paths. All groups need to be updated,

reflecting UAV maneuvers in real time.

3.4.6 Path Maneuver Through Heuristic Solutions

Algorithm 3 describes the heuristic way in which the planned path updates are computed

to avoid possible collisions. The proposed heuristic way to solve the UAVs’ collision

problem reduces the size of the collision group by hovering specific UAVs.

Velocity Change Maneuver Method

The deceleration/acceleration collision avoidance method is applicable when UAVs risk

colliding along the same virtual lane. Thus, these UAVs differ in speed but head in the

same direction.

Fig. 3.11 represents a 2D scenario in a layer in the airspace (as shown in Fig. 3.1b),

where two UAVs n1 and n2, with respective velocities v1 and v2, are expected to collide

at the collision spot O. These UAVs are distant from the point O with distances x1 and

x2 and dn1,n2,t is their temporal inter-distance. At the time n1 and n2 reach O, their inter-

distance dn1,n2 = 0. Therefore, decelerating one of the UAVs, which causes it to arrive
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Figure 3.12: UAVs positioning before the accident.

later at the point of impact, is efficient enough as a maneuver. That is done along with

optimization of the problem to limit the maneuver change cost.

Direction Change Maneuver Method

In a scenario where two or more UAVs’ inter-distances are reducing over time, the GCC

keeps track of each UAV’s direction while adjusting it to increase the safety of flights.

The change of the direction of the UAV’s flight when two or more UAVs are about to

collide follows five operations of the voxel implementation. The following section will

assess the performance of this scheme in terms of safety.

3.5 Performance Evaluation

This section describes our simulation environment, the evaluation conditions, and the

performance results of our safe UAV navigation algorithm in a UAV network with heavy

traffic.
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Table 3.1: Simulation Configuration

Parameters Description

1. Airspace A space of both length and width of 2km long, and a
height of 200m.

2. Number of UAVs Number of UAVs varies from 40 ∼ 520.
3. Flying speed UAVs fly at speeds ranging from 10 ∼ 100km/h.
4. Speed deviation UAV speed deviation varies from 1 ∼ 10km/h.
5. Position error A position (i.e., GPS) error 0 ∼ 20m.
6. ECM transmission rate 10 packets per second.

3.5.1 Simulation Setup

We conducted a simulation of a UAV network in the OMNeT++ simulation framework [37].

We adopted a 5G simulation of the 5G New Radio user plane simulation model (Simu5G)

for INET & OMNeT++ [67] and adapted it for use with UAVs specifically. Conceptually,

multiple layers are possible in this work. However, to simplify our performance evalua-

tion, this evaluation considers airspace in which UAVs fly in three layers: 50m, 100m, and

150m high, respectively. Table 4.2 summarizes the configuration of this simulation. Note

that the source code of our CANA simulation is available at https://github.com/

jaehoonpauljeong/CANA in GitHub and its demonstration video clip is available at

https://youtu.be/a_i83WxcuwM in YouTube.

We validated our UAV navigation scheme in an airspace in the form of a regular

cuboid that is 2km in length, 2km in width, and 200m in height. We deployed five dif-

ferent mission destinations, and UAVs were introduced in the airspace from four mission

bases. Fig. 3.12 shows the UAVs’ spatial position before the occurrence of an emergency

in the airspace. The color bar at the right shows the heights of the airspace UAVs flying

in.
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Figure 3.13: Impact of CANA on communication overhead.

3.5.2 Evaluation Parameters and Metrics

The evaluation of our UAV’s safe navigation considered the following evaluation settings:

• Evaluation Parameters: The parameters for evaluation include the impact of (i)

the number of UAVs, (ii) the maximum flying speed, (iii) the speed deviation, and

(iv) the position error.
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Figure 3.14: Impact of the number of
UAVs, a case of a single static obstacle.
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Figure 3.15: Impact of the number of
UAVs in the case of multiple obstacles.
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• Performance Metrics: The metrics for evaluation are the communication overhead

to measure the communication performance, the collision probability which mea-

sures collision risk when a UAV maneuvers toward an aerial virtual lane, and the

safety lane quality to assess how safe the airspace is during the execution obstacle

avoidance maneuvers.

• Baselines: We compare CANA with legacy situational awareness methods, includ-

ing a sensor-based approach (i.e., LIDAR) [50] and a networked approach (i.e.,

NCAS [47]). Unlike CANA and NCAS, sensor-based schemes detect objects that

are only within their line-of-collision (LOC).

A confidence interval of 95% is also used in this simulation to test CANA performance

evaluation results.

3.5.3 Simulation Results

We investigate in this section the safety performance by assessing the communication

overhead required by networked approaches, assessing the collision risk of each scheme

when avoiding obstacles through collision probabilities, and evaluating the safety quality

of airspace for the needed UAV maneuvers through its virtual lane quality.

Impact of CANA on Control Overhead

CANA, like NCAS, uses a context awareness model that relies on information sharing

over a network. Such a model achieves its purpose by transmitting awareness packets,

thus creating significant overhead. Therefore, a model that will reach the awareness goal

by sending fewer packets performs better within a computation-constrained environment.

We compared CANA and NCAS with different numbers of UAVs and different speeds to

identify and disseminate collision risk in a UAV network.
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For the evaluated number of aerial vehicles, which varied from 40 ∼ 520 UAVs,

flying with a maximal speed of 80km/h, CANA control overhead was found to be more

stable compared to NCAS, the overhead of which continued increasing with an increasing

number of UAVs. CANA reduces up to 63.3% of the control overhead of NCAS, as shown

in Fig. 3.13a. We also evaluated the control overhead required by 320 UAVs flying with

speeds 10km/h ∼ 100km/h, as shown in Fig. 3.13b. In this situation, CANA reduced

up to 66.6% of the control overhead required by NCAS, thus outperforming NCAS for all

the assessed parameters.

Impact of the Number of UAVs

This section assesses the impact of the number of UAVs on the overall safety of a UAV

network. We evaluate the safety of a situation in which an obstacle is introduced in the

aerial by computing the collision probabilities and the quality of virtual lanes of the obsta-

cle’s current layer and neighboring layers. Upon identifying an obstacle in the airspace,

the concerned UAVs detour toward the spatial areas in the airspace without risks of col-

liding, called safe zones. Virtual lanes enable the maneuvering decision toward the safest

zone while considering the paths of neighboring UAVs.

Fig. 3.14 assesses the impact of the number of UAVs flying with a maximal speed of

80km/h, on the overall safety of a UAV network when a static obstacle (i.e., a hovering

UAV due to some breakdown) is in the airspace. Within the emergency layer, we assess

the safety condition within an Emergency Lane (EL), a Right Lane (RL), and a Left

Lane (LL). We also assess the safety condition within the adjacent layers. The upper

layer is considered to be an Upper Lane (UL) and the down layer is considered to be

a Down Lane (DL). We assess situational safety by the collision probabilities obtained

from simulation results and the quality of virtual lanes of the obstacle’s current layer and

neighboring layers. A lower collision probability indicates a safer airspace. Fig. 3.14a
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Figure 3.16: Impact of UAV speed in the
case of a static obstacle.
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Figure 3.17: Impact of UAV speed in the
case of multiple static obstacles.
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shows that for all numbers of UAVs assessed herein, CANA was found to be safer than

the baseline schemes. CANA showed a lower risk of collision than any of the tested

baselines. As shown in Fig. 3.14b, which shows the safety quality in the emergency

layer, and in Fig. 3.14c, which shows the safety quality of the upper and lower layers, the

networked approaches (i.e., CANA and NCAS) were found to be capable of providing

maneuver possibilities to different layers with better lane quality compared to the sensor-

based approach.

Fig. 3.15 shows the impact of the number of UAVs on overall safety when multiple

static obstacles are introduced in the UAV network. For this evaluation, three simultane-

ous obstacles were introduced while creating multiple collision spots in the aerial envi-

ronment. These are UAVs that hover in the airspace by blocking the direction of other

UAVs. The results in Fig. 3.15a show that CANA achieved the lowest collision risk with

all numbers of UAVs tested. It also had the highest safety quality, as shown in Figs. 3.15b

and 3.15c, thus indicating that it provides better maneuver options.

Impact of Speed

We evaluated the impact of the maximal speed on the safety of UAVs given the existence

of static and dynamic obstacles in the UAV network. As a dynamic obstacle, we con-

sidered a dropping UAV falling unexpectedly towards the ground in the airspace. The

tested speeds vary from 10km/h ∼ 100km/h. Fig. 3.16 shows the impact of speed

on the different schemes when a static obstacle is identified in the airspace. Fig. 3.16a

shows that CANA had the lowest collision probability, thus being safer than the compared

schemes in assessing the overall safety of UAVs. CANA shows the lowest risk of colli-

sion compared to the baseline methods. While defining the maneuver dynamics of a UAV

when an obstacle is identified in the airspace, Figs. 3.16b and 3.16c, respectively, show

that the networked approaches (i.e., CANA and NCAS) provide higher quality maneuver
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Figure 3.18: Impact of speed in the case
of a dynamic obstacle.
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Figure 3.19: Impact of speed deviation in
the case of a dynamic obstacle.
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Figure 3.20: Impact of position error in the case of a dynamic obstacle.

possibilities in different layers and virtual lanes than the sensor-based approach.

We also evaluated the impact of speed on UAVs’ safety when multiple static obsta-

cles were identified in the airspace. To this end, we introduced three obstacles, which

are UAVs hovering in the airspace by causing the UAVs’ direction blocking, and we

tested the overall airspace safety at various speeds, as shown in Fig. 3.17. The results in

Fig. 3.17a showed that networked awareness mechanisms outperformed the sensor-based

mechanism. It also shows that CANA was found to be much safer than all the other

mechanisms. On the other hand, Figs. 3.17b and 3.17c, respectively, show the state of the

lane quality in the emergency layer and other layers. The networked awareness schemes

provide safer maneuver options than the sensor-based scheme. Thus, CANA is the safest.
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Fig. 3.18 shows a case testing the impact of speed when a dynamic obstacle (i.e., a

vertically dropping UAV) is identified in the airspace. The results in Fig. 3.18a show that

CANA has the lowest collision risk compared with the baselines. Figs. 3.18b and 3.18c

show that the networked awareness schemes have higher lane quality than the sensor-

based scheme, and CANA outperforms them all.

Impact of Speed Deviation

We evaluated the impact of speed deviation on the safety of UAVs given the existence

of a dynamic obstacle in the UAV network. For UAVs flying with a maximal speed of

80km/h, we tested the speed deviations varying from 1km/h ∼ 10km/h. Fig. 3.19

shows the impact of speed deviation on compared schemes.

Fig. 3.19a shows that CANA shows the lowest collision risk compared to the baseline

schemes. Figs. 3.19b and 3.19c show the impact of speed deviation on lane quality in

the emergency layer and adjacent layers, respectively. These results show that CANA

performs better by providing maneuver options with higher lane quality both in the emer-

gency layer and adjacent layers.

Impact of Position Error

We assessed the impact of position error when the safety assessment schemes identified a

dynamic obstacle, by configuring a position error varying from 0m ∼ 20m [68]. Fig. 3.20

shows the performance results of the compared schemes with position error.

Fig. 3.20a shows the collision risks in terms of collision probabilities and CANA

is safer than the compared schemes. The communication-based schemes show better

performance than the sensor-based schemes. Figs. 3.20b and 3.20c show the lane quality

in the emergency layer and its adjacent layers, respectively. DL is more crowded than UL

due to several UAVs landing at the destination, while others take off to the base station.
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As a result, UL has higher quality than DL, as shown in Fig. 3.20c. Therefore, it can be

concluded that CANA has higher lane quality in all the tested layers, thus outperforming

the compared baselines.

3.5.4 Discussion

The performance results demonstrate that CANA excels in maintaining safety and assess-

ing collision risks within UAV traffic, even under challenging conditions such as high

UAV density, varying speeds, and the presence of obstacles. Its superior performance

in reducing collision probabilities and maintaining high lane quality suggests that a simi-

lar cooperative, context-aware system could significantly benefit UAVs. More transparent

and predictable airspace can be achieved by incorporating technologies that allow manned

aircraft to share awareness and intentions, much like UAVs in the CANA system. This

shared awareness can enable pilots and automated systems to anticipate potential con-

flicts better and proactively adjust flight paths, thereby minimizing the risk of mid-air

collisions.

Moreover, the adaptability of CANA to different operational conditions indicates

that a comparable system in shared airspace could effectively handle the complexities

of mixed air traffic, including the diverse characteristics of different aircraft types and the

unpredictable nature of airspace emergencies. The ability of CANA to maintain safety

and efficiency under varying conditions suggests that a similar approach can enhance the

overall airspace safety and efficiency. Our research aims at a more integrated, coopera-

tive air traffic management system, inspired by the principles demonstrated in our CANA,

which represents a significant step towards reducing mid-air collision risks and improving

air travel’s overall safety and efficiency.
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3.6 Conclusion

This chapter proposes a Collision-Avoidance Navigation Algorithm (CANA) that au-

tonomously prevents collisions in a heterogeneous heavy-traffic UAV network. It designs

multi-dimensional airspace and virtual aerial roads to model UAV mobility with colli-

sion avoidance. A communication-based air mobility information sharing is proposed

to sense and assess the flight conditions. Near-to-happening collisions are detected and

avoided through probabilistic risk assessment and maneuvering UAV trajectories. It also

explores collision avoidance algorithms based on an optimization and heuristic solution

in a shared airspace. The simulation evaluation shows that UAV controls with our CANA

scheme outperform the two compared baseline methods. As future work, we will apply

AI schemes such as graph attention networks to improve our approach further. Aside

from this simulation-based performance, we will use our CANA scheme to commercial

off-the-shelf UAVs and conduct field experiments in the future.
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Chapter 4

ML-SAINT: Machine

Learning-Assisted Self-Adaptive

Interactive Navigation Tool for Parcel

Delivery Scheduling in Road Networks

The vehicular route planning in urban environments optimizes traffic and improves com-

mute efficiency, which is important for enhanced vehicular navigation. The navigation

task becomes more complex when it is required to satisfy time-critical driving applica-

tions such as parcel delivery. The Graph neural network approach is a typical solution

to provide safe and efficient routes in urban mobility [69, 70, 71]. Through the pattern’s

relationship of the road graph represented as edges of a graph, it can capture mobility

information such as speed, positions, acceleration, and orientation. Using classification

models, it can predict the existence of road congestion and thereafter deduce a less con-

gested vehicle route that guarantees fast destination arrivals. This chapter presents a Ma-
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chine Learning-Assisted Self-Adaptive Interactive Navigation Tool for Parcel Delivery

Scheduling in Road Networks. It investigates the performance of GCN in predicting the

best route, which exploits the rapid and accurate spatial-temporal traffic information to

predict optimal courier delivery schedules for connected vehicles in a road graph.

4.1 Introduction

Recently, the evolution of Intelligent Transportation Systems (ITS) has led to the avail-

ability of large traffic databases, which make it possible to automate vehicular traffic

and efficiently navigate vehicles in road networks [72]. It enables the prediction of road

congestion and the accurate determination of efficient vehicle routes, thus significantly

improving the effectiveness of road use and reducing driving delays. Modern cars can

perform fundamental driving route checks by independently selecting paths, avoiding ob-

stacles, recognizing the surroundings, and following determined paths in cooperation with

other vehicles for their successful driving [73, 74]. The efficient route planning task of

navigation is the most fundamental requirement for successful intelligent driving.

Vehicle navigation systems currently utilize real-time road network information to

offer vehicles the quickest paths to their destination [75]. Using Machine Learning (ML),

traffic forecasting techniques capitalize on past driving information to identify patterns

and predict outcomes in driving scenarios [76, 77, 69]. Traffic predictability enables

ITS to optimize driving flow, control congestion, improve driving safety, provide better

driving routes, and accurately estimate arrivals. However, traffic prediction is revealed to

be a complex task. It relies on road topology and high-quality data from sensors and the

cloud. It is also influenced by driving patterns such as weather and time (i.e., rush hour).

To reach a specific driving service on time, such as parcel delivery, real-time prediction

is needed to meet customers’ satisfaction. This route prediction enables the definition of
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traffic flow, regulation of traffic speed, and response to traffic demands.

Recent research on efficient road traffic forecasting can be categorized into statistical

methods [75] and machine learning methods [77]. The statistical method includes the

time series [75] and regression models [76]. A typical time series of traffic data is pro-

posed in [75], which can navigate vehicles in congested cities. Such a system lacks the

correlation of traffic data among nodes, which can significantly impact traffic predictions.

The regression method comes as a solution to these issues by estimating the relationship

among several traffic variables. A regression approach that predicts traffic flow using

machine learning algorithms was studied in [76]. An ensemble learning that combines

multiple machine learning models improves the traffic prediction of traffic flow [77]. The

statistical methods rely on historical traffic data from sensors (e.g., loop detectors, cam-

eras, etc) to analyze statistical properties for traffic predictions. These methods have a

limited view of road features due to their dependence on temporal patterns. Advanced

methods such as machine-learning techniques significantly improve the traffic forecast-

ing due to their capacity to explore multi-source data, and through feature engineering,

capture complex relationships that impact road traffic [69]. Given the graph nature of road

traffic, Graph Neural Networks (GNNs) are a well-suited machine learning approach for

traffic prediction [69].

GNNs are predictive graph learning models that identify the representation patterns

and the interconnection relationships of graph-structured data [70, 71]. Their capability

to adapt to network structure and traffic evolution over time through spatial-temporal

dependencies enables them to provide accurate traffic condition predictions. GNNs have

been explored in the studies of delivery schemes, leading to the prediction of parcels’

Estimated Time of Arrival (ETA) [70]. This work proposed a design of an inductive

graph transformer that combines retailers and road information for ETA determination.

Toward an accurate ETA estimation task, a heterogeneous information graph that jointly
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considers vehicle trajectory and temporal traffic information was proposed [71]. Despite

these efforts, there is still a long way to be undertaken to meet the ETA satisfaction on

the road network condition-dependent service, such as parcel delivery. Road congestion

resulting from unprecedented events such as accidents can highly affect the cargo driver’s

route, thus affecting the entire service delivery.

In this chapter, we propose a distributed road network traffic that combines an ML

model and a statistical model, which is a traffic distribution algorithm proposed by the

Self-Adaptive Interactive Navigation Tool for Cloud-Based Autonomous Traffic Opti-

mization (SAINT) [66]. We propose a navigation architecture in a road network depicted

in Fig. 4.1. A data exchange between the network infrastructure (i.e., vehicular cloud) and

vehicles allows the specific traffic data to be obtained for navigation decisions. We aim

to determine a cost-efficient and fast route for delivery service targeting multiple destina-

tions while minimizing the delivery cost in terms of ETA for the last-mile parcel delivery.

We define the prediction horizon in timely intervals to respond smoothly to application-

specific constraints and requirements such as deadline time and priorities. Through graph

representations, the traffic states are defined. We define this representation in two cat-

egories: spatial correlation representation and temporal correlation. This last helps to

communicate the relationships and interactions between nodes to enrich route planning

and estimate time of arrival (ETA) prediction.

In specific terms, our key contributions to this work are as follows:

• A cloud-empowered vehicular navigation architecture: We propose a design that,

through communication between the vehicular cloud and vehicles, allows the spe-

cific traffic data to be obtained for navigation decisions (see Section 4.3).

• A design of a self-adaptive prediction mechanism: We construct a graph attention-

aware mechanism for application-specific traffic forecasting that explores the tem-
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poral and spatial traffic flow in road graph nodes to calculate a congestion-free and

cost-efficient vehicle trajectory (see Section 4.4).

• A simulation-based graph convolutional network (GCN): We developed a road map

training that benefits the realistic application-specific traffic forecasting in the Sim-

ulation of Urban Mobility (SUMO)[78] (see Section 4.4).

• The design validation and performance evaluation: We evaluate the ML-SAINT

simulation for the intelligent travel path determination of cargo vehicles towards

various assigned parcel destinations. The results show that ML-SAINT outper-

forms the compared schemes (legacy SAINT) [66] and multiple linear regression

(LRSAINT) [79] as shown in the performance section (see Section 4.5).

The remainder of this chapter is structured as described below. Section 4.2 reviews the

related work relevant to traffic forecasting algorithms. Section 4.3 describes the problem

this chapter addresses. Section 4.4 describes the architecture of our proposed navigation

system model, and Section 4.5 evaluates its performance. Finally, Section 4.6 wraps up

this chapter and discusses future work.

4.2 Related Work

This section summarizes the recent advancements in road network path-finding methods

and their applications for specific road data processing.

The legacy pathfinding mechanisms are based on statistics[80, 81, 82], regression [83,

84, 85, 86], or hybrid by combining statistics and regression [87] methods. The common

statistical methods used in Pathfinding include the traveling salesman problem (TSP) [80],

A* algorithm [81], and Branch and Bound (BnB) [82] optimization problems. A compar-

ison of the route searching methods that use the greedy, Dijkstra, and BnB shortest path
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Figure 4.1: A system architecture of adaptive navigation in road networks.

algorithms was explored in [88]. An A* algorithm is a goal-directed search method that

heuristically guides to a targeted destination without exploring all directions [81]. The

Branch and Bound (BnB) algorithm retains the lowest value when assessing cases and

contrasts it with the presently computed value [82]. The statistical methods cannot re-

flect the external factors influencing their predictions, thus, regression mechanisms were

studied to address this issue.

Regression mechanisms include methods such as Polynomial regression [83], ma-

chine learning (ML) [84], deep learning [85], and graph neural network [86]. A polyno-

mial regression model is a machine learning method that models the relationship between

independent and dependent variables using a polynomial function [83]. It describes the

deviation from a linear pattern, introducing curves, arcs, or bends in the movement or
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form. A network-wide approach that combines machine learning with fundamental sta-

tistical time series proposed in [87] improved the accuracy of road traffic prediction by

significantly reducing the MSE (mean squared error) of predictions. A common deep

learning mechanism gaining popularity in traffic forecasting is a graph neural network

(GNN) [86]. GNN can capture spatial and temporal dependencies, thus improving the

traffic prediction performance. Several studies explored the spatial-temporal road traffic

forecasting for traffic prediction [89]

The recently proposed GNN mechanisms for road traffic forecasting include the attention-

based graph convolutional networks [90] and multitask representation learning [91]. The

attention-based [90] GNN exploits the spatial-temporal convolutions to capture the de-

pendencies in the graph network. It results in spatial and temporal correlations in graph

nodes, thus enhancing the accuracy of vehicle driving decisions. The temporal graph

convolution demonstrated the capacity to capture spatial-temporal correlation useful for

long-term traffic prediction tasks [92, 93]. A multitask representation learning [91] uti-

lizes the path information to learn meaningful information about road graphs, thus es-

timating a suitable driving path that responds to network structure and traffic demands.

These methods are also used to build systems that respond to the application-specific

demands in road traffic [94].

GNN enhances the predictability of parcel delivery delays in road networks. The in-

ductive graph transformers [94] were introduced to estimate the origin-destination (OD)

travel estimation of parcel delivery. The multi-task representation learning model for ar-

rival time estimation by preserving trip information to deduce the OD time estimates [91].

These methods have significantly improved the predictability of parcel arrival time, thus

boosting customer satisfaction. The study of road parcel delivery applications that lever-

age trip duration and space is hard to realize on real roads, given the complexity of driving

patterns. The complexity of city roadway machine learning is solved by integrating the
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Figure 4.2: Road network graph embedding generation for graph feature representation
learning.

routing and navigation through the SUMO simulator, rendering an integrated intelligent

navigation research for dynamic urban network possible [85].

The state-of-the-art schemes described above have explored OD and ETA in terms of

geographical shortest paths. However, a model that predicts road congestion to estimate

its effect on overall navigation performance is required for efficient navigation. In this

work, we design an appropriate, scalable graph neural network-based navigation scheme

to optimize road parcel delivery services by capitalizing on congestion metrics to define

the fastest routes. The next section discusses the problem targeted by this work.
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Table 4.1: Main Notations

Notations Description

V A set of vertices.
vi the ith vertex in a set of vertices V .
vFi The feature vector of vertex vi.
E A set of edges.
eij The edge between the ith vertex and the jth vertex in a set of

edges E .
eFij The feature vector of edge eij .
Nvi The set of vertices which are direct neighbors of vertex vi.
A The adjacency matrix.
D The degree matrix.

4.3 Problem Formulation

In this section, we describe the architecture, the problem, and the assumptions of a Graph

Convolution Network (GCN)-enhanced self-adaptive navigation system for efficient par-

cel delivery in a road network. Our goal in this work is to develop a traffic forecasting

enriched parcel delivery system that efficiently maximizes the predictability of service

delivery.

4.3.1 Road Network Description

We consider a road graph structure where the delivery system operates to be a graph

G(V , E ,A), where V is a set of N road network intersections, E is a set of road segments

with their cost c indicating the edge travel delay. A ∈ RN×N represents an adjacency

matrix in the road network. The node adjacency is expressed as:

ai,j =

{
1, if node i is adjacent to node j, (4.1a)

0, otherwise. (4.1b)
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Note that in a road network, i nonadjacency to j does not necessarily mean that j is

not adjacent to i. The traffic sampling frequency at each node is similar, thus allowing

the system to generate the same vector length of node features. We consider a route of

cargo ni transporting parcels to be a subgraph Gsbi such that Gsbi ⊂ G. In this work, we

design a mechanism that defines cargo routes to transport depot parcels while maximizing

profits by adjusting to the ever-changing delivery demands and complying with customer

satisfaction through enhanced time-precise service delivery.

The main components of the delivery system in a road network are described in

Fig. 4.1. Its topological information comprises of intersections which represent the graph

nodes vi ∈ V and roads representing edges eij ∈ E linking intersections vi and vj ∈ Nvi.

Note, Nvi is a set of nodes directly adjacent to node vi, and Nvi ⊂ V . Step 1 of Fig.

4.1 shows how statistical data observed at the vehicle level and roadside unit (RSU) level

are shared via communication to the vehicular cloud. In step 2, using a trained machine

learning model (i.e., STGCN and LR), a delay-constrained shortest path is calculated, and

it is shared and followed by the ego vehicle in step 3. This enables vehicles to be equipped

with knowledge-based traffic information from the vehicular cloud, which informs their

navigation decisions. This information is transmitted via vehicle-to-infrastructure (V2I),

which is transmitted by infrastructure such as Road Side Units (RSUs) to vehicles, or

Vehicle-to-Vehicle (V2V), which allows vehicles to communicate with other vehicles

within their communication range.

4.3.2 Assumptions

We formulate ML-SAINT under the following assumptions:

• A cargo vehicle can communicate with the vehicular cloud through cellular com-

munication such as 5G [95], thus enabling it to exchange information with the cloud
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Figure 4.3: A spatio-temporal self-adaptive traffic prediction framework.

server.

• Cloud mobility updates are accepted by the vehicles’ navigation whenever neces-

sary.

• The communication delay between vehicular cloud and driving vehicles is too small

compared to the trajectory delay, thus considered negligible in the ML-SAINT com-

putations [96].

4.3.3 Driving State Collection

The traffic information observed at each intersection vi ∈ V is represented in feature

matrix X ∈ R|V|×Fv . Note that feature Fv denotes the number of features explored at

each direct neighboring intersection to intersection vi. Features are the observable node

states that include the average speed, traffic flow rate (λi), and occupancy. At a given time

t, the graph features are extracted following this equation:

VF
t =

[
vFt
1 , v

Ft
2 , ..., v

Ft
N

]
(4.2)
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Figure 4.4: A node-level self-adaptive feature aggregation (SAFA) process for graph con-
volution networks.

where vFt
i is a series of the collected information during a period t at a particular graph

node vi. A node vi historical data observations is represented as:

vFt
i =

[
xit, x

i
t−1, x

i
t−2, ..., x

i
t0

]
, (4.3)

where xit is the feature observation at node vi at a instant of time t. Spatially, the entire

graph features recorded at an instant time t in N nodes are represented as:

GFt =
[
x1t , x

2
t , ..., x

N
t

]
, (4.4)

where xit incorporates the traffic data such as pending vehicles, traffic flow rate, and aver-

age speed observed at node vi at a specific observation time t.

Graphical embeddings are computed to more appropriately identify the structural and

relational representations of the road traffic data for each node vi. Fig. 4.2 depicts the

graph features mapping into learnable embeddings through multiple layers of neural net-

work training. The embeddings allow the exploration of hidden patterns from other graph

nodes that influence the traffic at a particular node.

A delivery path prediction takes advantage of the road graph topological information,

prior embeddings, and network-wide traffic observation to learn both temporal and spatial

dependencies, thus enabling the vehicle’s self-adaptation navigation in a road network as
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depicted by Fig. 4.3. During the training process, features are weighted to extract the

relationships to be adapted for the efficiency of a task at hand.

4.3.4 Delivery Problem Definition

Let a cargo route be a subgraph Gsbi ⊂ G made of a set of nodes Vsbi that build a sequence

of roads leading to parcels’ destinations. A cargo departs from the depot carrying a set

of parcels Psbi, where each parcel p(o, d, τ) is defined by its origin o, destination d, and

deadline τ . A delivery problem is to predict an efficient cargo trip using the historical

traffic states of the road network.

Problem 4.3.1. A parcel delivery problem: This consists of determining a path Pni
=

{pi1, pi2, ..., pit} for a cargo-carrying a set P of parcels such as that it satisfy the parcel de-

livery performance in terms of deadline satisfaction and via an optimized cargo trajectory

by maximizing the overall trajectory delay.

We define an optimal cargo traveling path as an objective-centric function that models

a navigation solution by reflecting the historical road network state to define future states

as:

Ok
n = fo

(
GFt ,Dn

t

)
, (4.5)

where fo is the objective function, GFt is the road features, and Dn
t represents parcel

features.

4.3.5 Delivery Problem NP-Hardness

The shortest vehicle path determination in a road network is revealed to be complex.

Considering that it requires exploring all nodes’ possibilities, it resembles the Traveling

Salesman Problem (TSP)[97]. TSP gets an efficient route while visiting all the assigned
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destinations [80]. It results in an infinity of possible routes, which cannot be exhaustively

calculated within polynomial time. Thus, TSP is an NP-hard problem, and the path is

found through heuristic approximations. As an NP-hard problem[98], determining all

potential combinations is theoretically possible but practically unachievable within a rea-

sonable timeframe. Thus, we can conclude that the definition of a cargo path is also an

NP-hard problem, which requires solving through approximations. This study introduces

a combination of Machine learning and SAINT methods to compute the shortest vehicle

that minimizes the overall road congestion. In Section 4.4, we describe the framework of

a proposed graph convolution-driven self-adaptive navigation tool for road traffic delivery

efficiency.

4.4 ML-SAINT System Design

This section describes the system design of a Graph Convolution Network (GCN)-assisted

self-adaptive navigation tool for the efficiency of parcel delivery service applications. It

represents a prediction mechanism to explore the spatial-temporal traffic flow of graph

nodes and a congestion-free cargo vehicle’s trajectory decision strategy.

4.4.1 System Architecture

The system design we propose to optimize the vehicular navigation for parcel delivery

optimization is depicted in Fig. 4.4. Road information such as pending vehicles, waiting

time, last step vehicle number, and previous step mean speed is kept as each node’s prop-

erties. It is passed to the model to extract learnable embeddings for navigation prediction

in the next step. This process aims to train and adapt the road graph mobility informa-

tion by extracting relationships among nodes that enhance the anticipation of navigation

behavior affecting the vehicle’s trajectory, adapting it for its route efficiency.
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It is a feedback model with Graph Convolutional Networks (GCNs) for vehicle route

planning in SUMO. It uses a feedback loop to enhance route planning by capturing spatial

dependencies and predicting traffic conditions within the road map. When provided with

the graph’s environment, vehicle dynamics, and traffic flow data representation, GCNs

predict the future traffic conditions that the route planning algorithm will use to calculate

optimal and cost-efficient vehicle routes. The system compares the desired traffic con-

ditions to actual conditions and adjusts route planning parameters and GCN predictions.

This design exploits the self-adaptive interactive navigation tool (SAINT), a mechanism

proposed in [66] which uses the interaction between vehicles and cloud to globally opti-

mize the vehicle navigation route.

4.4.2 SAINT Navigation Description

This section presents the SAINT [66] navigation, a global traffic optimization approach

through its tailored Congestion Contribution model, and its use for the shortest path algo-

rithm.

Vehicle Trajectory Congestion Contribution

A vehicle’s trajectory from origin to destination comprises a sequence of road segments.

For an ego vehicle ni which traverses through p road segments to its destination, its tra-

jectory delay, also called the end-to-end delay (E2E) Di
n is

Di
n =

k∑
i=1

d(vi,vi+1), (4.6)

where d(vi,vi+1) is the link delay of a road ei,i+1 from intersection i to intersection i+ 1.
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Shortest Path Definition in SAINT

Knowing that by simply computing the geographical shortest path for navigation, the

congestion will propagate in the road network over time, thus causing the currently non-

congested roads to be congested shortly. SAINT modeled a congestion contribution ci as

a congestion metric of the current edge ei to the overall road trajectory as follows:

ci = 1− Di

D
, (4.7)

where D is the end-to-end travel delay of a vehicle travel path and Di is the current sub-

route delay. A sub-route is a route towards the current parcel destination. Fig. 4.5 shows

the SAINT’s step functions of two vehicles whose routes are mapped. SAINT defines a

Delay Constrained Shortest Path (DSP) algorithm, which enables the navigator to define

a vehicle’s shortest path with the smallest congestion increase to reach its intended desti-

nation. Through α-percent delay increase, it defines a time-wise path with the minimum

congestion contribution. In this design, we model the cargo traffic dynamics prediction,

which, knowing a congestion prediction, defines a commendable trajectory of a cargo

vehicle.

Given a detour factor α and a set X = {x1, x2, ..., xn} of road features, the delay-

constrained path for a cargo satisfies:

D ≤ αd,

where d = α1x1 + α2x2 + ...+ αnxn.
(4.8)

4.4.3 Road Network Traffic Collection

The road network traffic sampling process consists of message passing and data explo-

ration steps. In message passing, using an aggregation function, a local sampling of road

93



� � � �

� � � ��� �

� �

�
�

����
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

��

���

�
�

��

���

�����

�
�
�
�
�
��
��
�
	


�
�
��
��


��
�
�

��

��

���	

���	

�� ���� ����

�� ���� ����

��

��


��
�������
������������

�������
���������

������������������

���

���

���

Figure 4.5: Edge congestion contribution with the step function.

information at the node level is performed in consideration with its neighbors N and up-

dates node self-information via an update function. In data exploration, we calculate a

feature vector based on the hidden layer state and predict the navigation task, such as

path planning.

4.4.4 Self-Adaptive Feature Aggregation

This design proposed a graph convolution network (GCN) with self-adaptive feature ag-

gregation (SAFA). It uses the learnable embeddings encoded from the collected node

features VF
t to capture the spatial-temporal dependency in road traffic. It is a traffic pre-

diction framework that captures road network-wide graph traffic to define an efficient

trajectory of an ego vehicle (i.e., a cargo vehicle). This system models the capture of spa-
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tial dependence in a road network through graph convolution layers. The goal is to build

an aggregation module that combines each node’s gathered features to provide a graph

with learnable embeddings for optimized task-enhanced predictions.

A Polynomial, such as the Chebyshev polynomial, is used to learn the graph embed-

ding in GCN [99]. For a graph with an adjacency matrixA ∈ RN×N and its degree matrix

D ∈ RN×N , its initial Laplacian is expressed as L = D − A. Its normalized Laplacian

matrix is a symmetric matrix expressed as L = I − D−1
2 A−1

2 . A K-order Chebyshev

polynomial approximation of a spectral filter is expressed as follows:

Tk(L) =
k∑

k=0

θkTk(L̃), (4.9)

where θk is the k-order learnable weight matrix, L̃ = 2L
λmax

− I is the k-order Chebyshev

polynomial of the scaled Laplacian matrix, λmax being the biggest eigenvalue of L.

A GCN node’s embedding update rule for GNN from layer l is expressed as:

hl+1
i = σ(

k∑
k=0

θ
(l)
k Tk(L̃)h

l
i, (4.10)

Where hli represents the node vi embedding at the l obtained via an activation function σ.

The encoder iteratively processes the node input features and produces the conceptualized

node representation. On the other hand, the decoder uses this node representation to

process the next navigation token. This process is calculated as follows:

g(F ,A) = σ(ÂFWtWt−1), (4.11)

where Â is the estimate normalized adjacent matrix, F is the graph feature representation

matrix, Wt is the learnable weight matrix of the current layer, andWt−1 is the previous

layer learnable weight matrix.

The Algorithm 4 shows how these features are extracted and processed in the GCN-

SAFA. It samples all nodes and assigns the feature information initialization. Line 2− 10
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Algorithm 4 Graph Feature Extraction Algorithm

1: function EXTRACT GRAPH FEATURE(G(V , E ,A)) ▷ For a
graph G(V , E ,A), compute the node embedding using an interactive model training
with Chebyshev aggregation.

2: for each vi ∈ V do
3: hi0 = xi0,∀vi ∈ V ▷ Set initial embedding as the node’s features vector.
4: for each l ∈ L do ▷ Each l represents a message passing neural network

layer.
5: for each vj ∈ Nvj do Iterate through a set of node vj’s neighbor nodes
Nvj .

6: hjl = AGGREGATE{(xil−1)},∀j ≤ L ▷ Aggregation of
node features to adapt the navigation relationship of neighbor nodes with Chebyshev
polynomial filter.

7: hjl = σ(W l.CONCAT (hjl−1, h
j
l−1)), ∀j ≤ L

8: end for
9: end for

10: end for
11: end function

combines the node sampling stage and the aggregation stage of the node representation

calculation stage. Line 6 aggregates the current node features with the neighboring nodes

vj ∈ Nvi. Using features of the Laplacian matrix derived from the adjacency matrix, it

captures the graph’s connectivity, which is used for spectral graph theory-based GNNs.

Line 7 concatenates the aggregated neighbor features vector and is fed to the activation

function σ to obtain the actual current node representation, which is necessary for road

traffic prediction. ML-SAINT design handles the road traffic through a sequence of func-

tional steps described in Fig. 4.6.

4.4.5 Modeling Road Traffic

ML-SAINT design models the road traffic through a sequence of functional steps. Fig. 4.6

describes the steps involved in traffic forecasting. These steps are described below:
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Figure 4.6: Road graph data processing description.

Step 1: Feature extraction step: It is a data collection of descriptive topological and

spatial-temporal graph information.

Step 2: Model training: It consists of processing the graph features to produce a learnable

embedding, including the graph representation and the relationships.

Step 3: Graph Convolution with optimization: Adam optimizer is a widely used machine

learning optimization. Using the loss function, the optimizer keeps trying to

minimize the loss between the predicted value and the real value.

Step 4: Vector parameter update: it involves computing a weighted average of past and

squared gradients, adjusting the learning rate (η) accordingly, and updating the

model parameters (θ). Following the training phase, the model’s outcomes are

preserved for subsequent learning iterations.

Step 5: The system selects an optimal choice at each parcel destination and constitutes

an ego vehicle’s overall navigation route. The ML uses the trained model and the
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available edge data to predict the travel time.

The Mean Squared Error (MSE) loss function is used to evaluate the proposed model’s

performance cost as:

cgcn =
1

N

N∑
i=1

yi − ỹi, (4.12)

where yi is the desired route information and ỹi is the actual GCN route prediction. MSE

quantifies the average squared difference between predicted values and actual outcomes,

evaluating the model’s precision. The system minimizes a loss value, which measures the

difference between the predicted and actual traffic states. Following the training phase,

the model’s outcomes are preserved for subsequent learning iterations.

4.4.6 An Application-Specific Path Determination Module

Our model designs a graph neural network convolution to enhance the performance of

applications, whose effectiveness highly depends on graph information representations.

We designed and evaluated the performance of parcel delivery by calculating its path to

satisfy both customers and benefits.

Travel Time Estimation

The crucial step is to estimate the travel time Tij(t) on each edge eij at a given departure

time t. We can model this relationship based on the predicted traffic conditions. Using

Predicted Flow and Capacity (e.g., BPR-like function): If the GNN predicts flow fij(t)

and we know the capacity cij and free-flow speed sfree,ij , we can estimate the travel time

as:

Tij(t) =
lij

sfree,ij

[
1− α

(
fij(t)

cij

)β]
, (4.13)

where α and β are the parameters that define the congestion sensitivity.
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Shortest Path Prediction

Assume a cargo cv is assigned to deliver a number np of parcels, where each parcel

is defined by its destination pd and deadline pft. The goal is to find a path Pcargo =

{v1, v2, ..., vk} in the graphs G, where the total travel delay from v1 to vk is minimized.

The mathematical computation of the future cargo path mobility is defined as:

hnt = hnt−1

⋃
∀nj:n→nl

ft(h
n
t−1, k, h

nj
t ), (4.14)

which represents the permutation operation for the mobility information combination op-

eration.

Cgoal = g(G, C) = {v1, v2, ..., vnd}. (4.15)

We consider a cargo that drives starting from node vi at time ti, whose traversing delay

from vi to vi+1 is ti+j = ti + Tvi,vi+1
(ti). The total predicted travel time, which is a route

cost metric, is the sum of travel times of the path P .

T (P ) =
k−1∑
i=1

Tvi,vi+1
(ti). (4.16)

Definition 4.4.1. Cargo navigation path: It is a subgraph subG ⊂ G such that a cargo

vehicle nego will deliver np by satisfying the minimal driving time according to (4.17).

The objective path P ∗ that minimizes the total travel time is

P ∗ = argmin
P
T (P ). (4.17)

The algorithm 5 describes the steps involved in computing a cargo trajectory path that

meets the couriers’ estimated time of arrival (ETA). The purpose is to shorten each road

link delay, therefore shortening the overall End-to-End (E2E) path delay.
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Figure 4.7: Road network in the Gangnam area of Seoul for simulation.

Our proposed self-adaptive navigation approach that determines a cargo navigation

path is presented in Algorithm 5. Given a set C of couriers, destined to np number of des-

tinations; compute a cargo trajectory subG ⊂ G made of a sequence of graph edges such

that each courier destination is reachable. Lines 2-9 define the targeted destination nodes

and prepare them to be sorted based on their aggregated features. Lines 10-21 assess the

trajectory of a cargo according to the node’s reachability and congestion constraints. Af-

ter getting the node’s features in line 12, line 17 calculates a proper route through a graph

convolution function g(.).

The vehicle navigation control adjusts the cargo route planning parameters and GCN

predictions. It adjusts the link weights (i.e., road congestion) in the cost function and the
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Algorithm 5 An Enhanced Cargo Path Decision Algorithm

1: function COMPUTER CARGO PATH(G(V , E ,A), C) ▷ Knowing
a graph G(V , E ,A), compute a cargo trajectory that satisfies a set C of np couriers to
be distributed along the roadway destinations.

2: D ← ∅
3: nd← 0
4: for each pi ∈ C do
5: while pdi /∈ D do
6: D[nd]← pdi ▷ Assign destination pdi the destination set D
7: nd← nd+ 1
8: end while
9: end for

10: for i = 1 to epochs do
11: for each vi ∈ D do
12: vi = hi0,∀vi ∈ V ▷ Get node’s features vector.
13: for each vi to v0 do ▷ Learning appropriate road traffic through back

propagation.
14: for k = 1 toN do
15: pjl = (pil−1), ∀j ≤ L

16: hjl = concat(pil−1, h
i
l−1)

17: nk = GCN(hjl )
18: Err = Get MSE(nk)
19: end for
20: end for
21: end for
22: end for
23: end function

GCN prediction horizon (∆t). The GCN model is periodically retrained with new traffic

data to improve prediction accuracy. The error term can be used as a signal to fine-tune

the GCN model. For instance, if the GCN consistently underpredicts congestion in a

specific area, the error can be used to adjust the GCN’s weights to increase its sensitivity

to congestion in that area.
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Navigation Route Assignment

Several vehicles are distributed in the road network, causing congestion and driving de-

lays. The CCM measures how vehicles on the road network add to the congestion of each

road network edge. The CCM concept includes proportional data for every graph edge,

providing insight into potential future congestion along specific routes. Utilizing cloud-

based navigation makes it feasible to predict future traffic congestion on roads currently

free of congestion, enabling the determination of the optimal driving routes.

The design the road traffic predictions considering a road network’s spatial and tem-

poral dependencies. The performance evaluation compares two methods: the multiple

linear regression (MLR) model and the Graph Neural Network (GNN). The MLR model

predicts a single output with various inputs, while the GNN enables several outputs, thus

providing more informed predictions.

4.4.7 A Description of Road Graph Training Scenario in SUMO

Using the Gangnam map extracted from OpenStreetMap, we converted it using the SUMO

netconvert tool and refined the network representation for simulation accuracy. This con-

structs a trainable graph, where intersections represent graph nodes and edges link ad-

jacent nodes. We then generate realistic vehicle routes for the Gangnam area using a

demand modeling approach that implements a demand model to simulate the commuting

patterns of cargo cars and the general background traffic influencing traffic flow in Gang-

nam. Relevant data is periodically extracted as simulation output, including node features

(i.e., average vehicle speed and vehicle count) and edge features (i.e., average vehicle

speed, vehicle flow, occupancy, and travel time), which is a time series of feature vectors

for each node learnt by the spatio-temporal graph convolution networks (STGCN).

We trained our model to be able to predict traffic, detect congestion, and analyze

102



traffic patterns. In the training process, the GCN model takes a sequence of historical

traffic observations (e.g., traffic speed, flow, or density) for all nodes in the Gangnam

road network as input. It is represented as a tensor of dimensions of the number of time

steps, the number of nodes, the number of features, and the adjacency matrix of the road

network fed into the GCN. The model’s output predicts the traffic conditions for a future

time horizon (e.g., next 10 seconds) for all nodes. We use the Adam optimizer, which uses

a Mean Squared Error (MSE) loss function for version validation of the hyperparameter

tuning to avoid overfitting in GCN layer configurations. We test the trained GCN model’s

performance on different traffic conditions in the Gangnam area to assess how effectively

it can predict vehicle traffic within the complex urban environment of Gangnam, Seoul,

using a realistic SUMO simulation. In section 4.5, we describe our proposed model

validation implementation and its performance evaluation.

4.5 Performance Evaluation

This section describes our system validation environment, the evaluation conditions, and

the performance results of this proposed vehicular navigation for the efficiency of parcel

delivery services.

4.5.1 Simulation Setup

To validate this proposed framework, we integrated the Simulation of Urban Mobility

(SUMO)[78], a microscopic traffic simulator for road networks, with Keras deep learning

library [100]. Using this simulator, we collect the traffic data obtained while running

the vehicles within a target road network based on the SUMO and train it for vehicle

navigation predictions. The feedback control logic and GCN inference in an external

Python script communicate with SUMO via TraCI.
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Table 4.2: Simulation Configuration

Parameters Description

1. Number of vehicles (N) Total Number of vehicles N = 1500. The testing
vehicles range from 20 ∼ 100 of the vehicles driving
in the road network, and the rest are the traffic
background.

2. Speed limit (vmax) The maximum vehicle speed for road segments. The
default value is 80km/h.

3. Acceleration a The vehicle acceleration in time. The default value is
3m/s2.

4. Number of destinations nd The number of destinations a cargo needs to pass
through in a delivery path. The default value is 6.

5. Number of charging
stations nc

The number of available charging stations in a road
network where vehicles can be recharged. The
default value is 10.

In this evaluation, we demonstrate the vehicle traffic simulation in a real map of the

Gangnam area of Seoul for simulation obtained from OpenStreetMap [101] as depicted

in Fig. 4.7. It is a 2km long width and 2.5km long height road network made of 582 junc-

tions and 1415 edges. We simulated the electric vehicles in SUMO with the simulation

settings for the vehicle length to 3m and the minimum gap between vehicles to 1.5m.

4.5.2 Evaluation Parameters and Metrics

The evaluation of our machine learning-assisted self-adaptive navigation tool considered

the following evaluation settings:

• Evaluation Parameters: The parameters for evaluation include the impact of (i)

the number of delivery vehicles, (ii) the number of destinations, (iii) the maximum

speed, (iv) the maximum acceleration, and (v) number of background vehicles.
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Figure 4.8: Training and validation loss of STGCN and LR Models

• Performance Metrics: The metrics for evaluation are the average link delay and

the delivery vehicles’ end-to-end delay (E2E).

• Baselines: We compare the ML-SAINT with the legacy SAINT [66] and the linear

regression (LR-SAINT) [79] methods in this performance evaluation.

A confidence interval of 95% is used in this simulation to test the parcel delivery perfor-

mance evaluation results.

4.5.3 Testing Results

This section summarizes the testing results for our proposed model’s performance. We

first compare the spatial-temporal graph convolutional network (STGCN) training perfor-

mance in contrast with the multivariate linear regression model and evaluate our model

for various test cases for its performance evaluation.
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Model Training Performance

We applied a mean square error (MSE) as a performance evaluation criterion of the train-

ing methods. For MSE evaluation, we compare the navigation task completion time

against the epoch graph shown in Fig. 4.8. This figure shows that as the number of it-

erations increases, the data set training loss value continually decreases, tending to nearly

zero. This demonstrates that the STCGN training can be correctly completed, improving

navigation results. This validation figure shows that as the number of tested epochs in-

creases, the STGCN training gives smaller errors for model training and validation than

the LR-based training model.

Impact of Number of Delivery Destinations

While evaluating this model, we simulated 1500 vehicles traversing the road network.

Among these vehicles, 1400 background vehicles drive on the road in random routes,

and 100 test vehicles (i.e., cargo vehicles) drive to their dedicated delivery destinations.

To assess the impact of the number of delivery destinations, we measured the metrics

by varying each test vehicle’s destinations from 2 to 12 for all 100 test vehicles. In this

test, vehicles drive with a maximum speed of 60 km/h and an acceleration of 3 m/s2.

We compared the two regression models, the multivariate linear regression (LRSAINT)

and the machine learning approaches (ML-SAINT)-based on spatio-temporal graph con-

volution networks, to the statistically based traditional SAINT. The performance of the

compared models is depicted in Fig 4.9. It compared the navigation performance of these

models in terms of the average link delay depicted in Fig. 4.9a and the average end-to-end

delay depicted in Fig. 4.9b. The results show that the regression models (i.e., LRSAINT

and ML-SAINT) outperform the statistical-based SAINT regarding average link delay

and E2E delay. ML-SAINT reduces up to 42.2% of the SAINT’s navigation link delay
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Figure 4.9: Impact of the number of delivery destinations on navigation.
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Figure 4.10: Impact of the number of delivery vehicles on navigation.

and 42.6% of SAINT’s navigation E2E delay. ML-SAINT gives the lowest values of aver-

age link delay and E2E, thus outperforming the baseline mechanism for the test vehicles’

navigation route for all the compared numbers of destinations.

Impact of number of Delivery Vehicles

We tested the impact of the number of delivery vehicles by measuring the mean link delay

and mean E2E delay for 20 to 100 delivery vehicles. It is to be noted that the total vehicles

in the road network is 1500 in all the tested cases. When we evaluate the performance of

20 test vehicles, the background vehicles are 1480. When we test the performance for 40
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test vehicles, the number of background vehicles is 1460, and so on. In this test, vehicles

drive with a maximum speed of 60 km/h and an acceleration of 3m/s2. Fig. 4.10 depicts

the performances of ML-SAINT on different numbers of vehicles against the compared

baselines.

The results in Fig. 4.10 show the superiority of linear regression models (LRSAINT

and ML-SAINT) over the statistical SAINT to provide the best routes for the cargo ve-

hicles. Fig. 4.10a shows that on average, ML-SAINT provides the lowest value of link

delay, thus ensuring that it provides the fastest traversal of a road compared to both LR-

SAINT and SAINT. Fig. 4.10b shows that on average, ML-SAINT provides the fastest

route from source to destination for all the tested test vehicles, compared with the lin-

ear regression-based SAINT and the statistics-based SAINT. ML-SAINT reduces up to

25.9% of SAINT’s average link delay and up to 26.56% of SAINT’s average E2E delay.

Thus, ML-SAINT is the best navigation option for delivery route finding.

Impact of Speed

To assess the impact of vehicle speed on the navigation performance, we measured the

metrics by varying the vehicle’s speed limits from 20 km/h to 100 km/h. In this testing,

we kept the vehicle’s acceleration at 3m/s2 and tested 100 test vehicles (i.e., cargo vehi-

cles) driving toward 6 delivery destinations. Fig. 4.11 shows the navigation performance

results of ML-SAINT against LRSAINT and SAINT for the tested speeds.

The results in Fig. 4.11 show that ML-SAINT outperforms both the LRSAINT and

the statistical SAINT for all the tested speeds, both in terms of link delays, Fig. 4.11a,

and E2E delays, Fig. 4.11b. ML-SAINT reduces up to 22.2% of SAINT’s average link

delay and up to 19.64% of SAINT’s average E2E delay. It also shows that the regression

models (ML-SAINT and LRSAINT) perform much better than the statistical SAINT in

terms of navigation performance.
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Impact of the Acceleration

We also examined the impact of acceleration on the navigation performance by comparing

ML-SAINT, LRSAINT, and statistical SAINT for the tested accelerations varying from

1 m/s2 to 6 m/s2. This testing is done while keeping the vehicle’s speed at 60 km/h

and testing 100 test vehicles (i.e., cargo vehicles) driving toward 6 delivery destinations.

Fig 4.12 shows the performance of these compared three navigation mechanisms.

Figs. 4.12a and 4.12b show the impact of speeds on average link delays and E2E de-

lays, respectively. This result clearly shows that the regression mechanism outperforms

the statistical method both in terms of estimating the edge traversal delay and the route

traversal delay to the destinations. ML-SAINT reduces up to 45.91% of SAINT’s average

link delay and up to 44.19% of SAINT’s average E2E delay. It also stipulates the supe-

riority of ML-SAINT over both LRSAINT and SAINT, thus proving that ML-SAINT is

the best navigation option to satisfy the fastest parcel delivery.

Impact of the Density

This section assesses the navigation performance of ML-SAINT, LR-SAINT, and SAINT

schemes under different densities in the road network. We tested these schemes’ perfor-

mance for background traffic of vehicles varying from 200 ∼ 1400 vehicles, while 100

delivery vehicles are driving in the same road. The car drives with a maximum speed

of 60km/h, an acceleration of 3m/s2. Fig. 4.13 illustrates the navigation performance

under different densities.

The results in Fig. 4.13 show the superiority of machine learning models (LR-SAINT

and ML-SAINT) over the statistical SAINT to provide the best routes for the cargo ve-

hicles when the traffic density grows larger. Fig. 4.13a shows that when the background

vehicle is 600 or more, ML-SAINT provides the lowest value of link delay, thus ensuring
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Figure 4.11: Impact of the maximum speed on navigation.
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Figure 4.12: Impact of acceleration on navigation.
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Figure 4.13: Impact of vehicle density on navigation.
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that it provides the fastest traversal of a road compared to both LR-SAINT and SAINT

in congested roads. Fig. 4.13b shows that ML-SAINT provides the fastest route from

source to destination for the high-density road traffic (≥ 600 vehicles), compared with

the linear regression-based SAINT and the statistics-based SAINT. ML-SAINT reduces

up to 22.1% of SAINT’s average link delay and up to 20.7% of SAINT’s average E2E

delay when the background traffic reaches 1400 vehicles. Thus, ML-SAINT is the best

navigation option for delivery route finding.

4.5.4 Discussion

GCNs can be computationally intensive, especially for large graphs. It requires optimiz-

ing the GCN architecture and training process for real-time performance. It is to be noted

that the graph structure influences the performance of the GCN. To exploit the full GCN

potential, one must choose a graph representation that effectively captures the spatial de-

pendencies in the traffic network. It also demands carefully tuning the GCN hyperparam-

eters (e.g., number of layers, learning rate) and control parameters (e.g., control gains) for

optimal performance. Optimizing the GCN training inference process makes it possible

to run the navigation applications in real time. The system design of this work enables

handling large-scale traffic networks, increases traffic volumes for scalability purposes,

and ensures the system’s robustness to noise and uncertainties in the traffic data. This

spatio-temporal procedural mechanism adapts the graph to dynamic changes in the net-

work (e.g., road closures, new constructions), thus proving its superiority for navigation

systems.
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4.6 Conclusion

This chapter explored the SAINT’s performance when regression models were applied to

spread traffic through road networks. It also assessed its impact on courier service de-

livery by enhancing its efficiency. ML-SAINT proved to be more effective when dealing

with more destinations than baselines. In upcoming research, we will explore additional

machine learning models or alternative methods to distribute traffic across road networks.
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Chapter 5

Conclusion

This thesis studied the safety- and efficiency-enforcing mechanisms for terrestrial and

aerial vehicular cyber-physical systems. It presents the mechanisms that, through the

network-enabled opportunities, bridge the interoperability among nodes to achieve nav-

igation safety and efficiency purposes. To summarize, the contributions and future per-

spectives of this work are as follows:

In the first place, it presented a context-aware navigation protocol (CNP) for safe

driving in vehicular cyber-physical systems. It safely guides vehicles to avoid out-of-

sight obstacles using wireless communications. It provides safe routes for vehicles at risk

of being potentially affected by obstacles towards a safe lane through intuitive metrics de-

fined to identify the safest lane for vehicle maneuvering. As out-of-sight obstacles cause

many severe accidents, the vehicles’ connectivity and communication play an important

role in the proposed safety method of vehicular transportation.

In the second place, it proposed an autonomous collision-avoidance navigation algo-

rithm for heavy-traffic UAV networks. This mechanism provides safe control suitable for

maneuvering large numbers of UAVs in the growing urban air mobility. Through explicit

decisions based on robust risk assessment proposed in this work, UAVs safely navigate
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the heterogeneous airspace, enabling the efficient achievement of their mission.

Finally, it advocated an advanced machine learning-assisted self-adaptive navigation

approach that uses a graph neural network to enhance vehicle path planning and navi-

gation in an application-specific environment. The vehicle selection and classification

from continuous learning of how vehicular networks safely relate strengthens vehicles’

capability to decide efficient paths autonomously.

For future work, in our first contribution, we will enhance our collision probability

computation, considering a vehicle’s reaction time. We will also implement and test this

CNP protocol on real cars to improve its accuracy and usability for safe driving. We

will also test the impact of the CNP on the overall trajectory performance of the driving

vehicles as another way to test and improve navigation efficiency. In our second work,

we will study the impact of the safety-enabling mechanism on the overall UAV service

performance. For our third work, we will generalize our model for aerial vehicles to

enable the modeling of aerial graph structures, study the aerial vehicles’ trajectories and

relationships to guarantee the aerial traffic predictability, and enhance the safety of service

delivery in aerial networks.
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Appendix A

CNP Appendix

This section describes the supplement content of CNP.

A.1 Emergency Maneuver Planning

In this section, we expound on the vehicles’ emergency maneuvers based on the criticality

of the CNP risk assessment.

The CH orchestrates the maneuvers of the CMs from closest to farthest from the

obstacle. A goal position that an emergency vehicle nem ∈ VE drives toward is called the

target position tpos, in the maneuver lane. The maneuver reference path (pref ) from the

contour area of a vehicle nem has tpos as its ending point.

A.1.1 CNP Emergency Vehicle Maneuver

We advocate for the minimal contour-based path planning to define both the control path

and its tracking.

During the maneuver, the first task is to define the maneuver inputs u =
[
ρ a

]T
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Figure A.1: Cluster members’ maneuver processing flow toward obstacle avoidance.

that guarantee an nem to safely bypass the obstacle. Those control inputs are the smallest

steering angle that will point nem to tpos from the nem contour area definition steering

angle inputs.

u = min

ρ1
a1

 ,
ρ2
a2

 , ...,
ρk
ak

 , (A.1)

where

ρ = steering angle input,

a = acceleration input,ρj
aj

 , j ≤ k = contour definition inputs.

We obtain an emergency control input from the emergency vehicle’s minimal contour

area.

Definition A.1.1 (Minimal Contour Polygon Area of a Vehicle). Let the Minimal Con-

tour Polygon Area of a Vehicle be a range formed by a series of n positions ζ that a ve-

hicle can reach within the interval time ∆t, when driving at steering angles [ρmin, ρmax].
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For ρ ∈ [ρmin, ρmax], with ζp = {Pathρmin...Pathρmax} paths, each of the path time step

positions are Pathρ = {Pto, Pt1, ...Ptk} for k = ∆t

δ
.

Given the current position Pt of a path, the next position Pt+δ is computed as follows:

Pt+δ = Pt + f(at, ρt)

= (xt, yt) + vtδ(cos(θt+δ), sin(θt+δ)),
(A.2)

where θt+δ = θt +
vt+δ

L tan(ρt)
and vt+δ = vt + atδ. Our algorithm decides Pref ∈ ζp such

that it heads to a destination that is as close to the tpos as possible.

Pref ∈ ζp for argmin[dist(tpos, Ptk)]. (A.3)

A vehicle nem follows Pref to avoid collisions with nob or other nodes throughout

the entire ∆t. For each step time δ, the control input (ρ, a) that defines Pt+1 next to

nem’s position will always be as close to Pref as possible. The maneuver process also

ensures the non-degradation of the remaining vehicles’ safety that might result from nem’s

movement. The emergency trajectories not only rely on the kinematics of the currently

driving vehicles, but also flexibly adapt to the arrivals of new vehicles on the emergency

road.

A.1.2 Sequential Probabilistic Control Definition

The probability of nE
1 colliding with nL

1 while maneuvering toward LL to avoid a collision

with nob is computed as:

P (nE
1 ⊗ nL

1 ) =
AL

1 ∩ AE
1

AE
1

, (A.4)

where AL
1 and AE

1 are the minimal contour polygons areas respectively created by vehi-

cles nL
1 and nE

1 during the maneuver time ∆t. Fig. A.2 illustrates the contours of three

adjacent vehicles driving in a three-lane road which has an obstacle in the middle lane.
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Figure A.2: Contours of adjacent vehicles in an emergency situation.

Fig. A.2b shows the contour intersection area that has been taken into account while cal-

culating the appropriate nE
1 ’s maneuver to avoid future collision risks.

We maneuver nE
1 within ∆t in consideration of the neighbors’ contour areas. The con-

trol inputs
[
ρi ai

]T
shall guarantee the safe conditional collision probability toward the

neighboring vehicles. The probability that nE
1 collides with two vehicles in the maneuver

lane will be calculated by the independent and identically distributed (IID) as follows:

P (nL
2 ⊗ nL

1 ⊗ nE
1 ) = P (nL

2 ⊗ nL
1 |nL

1 ⊗ nE
1 )

= P (nL
2 ⊗ nL

1 )P (n
L
1 ⊗ nE

1 ).
(A.5)

Considering a maneuver lane wherein three vehicles are currently driving, the maneu-

ver effects are computed in the same way as follows:

P (nL
3 ⊗ nL

2 ⊗ nL
1 ⊗ nE

1 ) = P (nL
2 ⊗ nL

3 |nL
2 ⊗ nE

1 )

= P (nL
3 ⊗ nL

2 )P (n
L
2 ⊗ nL

1 )P (n
L
1 ⊗ nE

1 ).
(A.6)

By generalizing to the number of vehicles (u) driving in L, the collision probabilities
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Algorithm 6 Compute Control Inputs

1: LSD ← (x0, y0, v0, θ0, ρ0) ▷ Local Sensor Data (LSD) are data sensed by a vehicle’s
On-board Unity (OBU): position (x0, y0), speed v0, direction θ0, and current steering
angle ρ0, respectively

2: RSD ← (xi, yi, vi, θi) ▷ Remote Sensor Data (RSD) are neighbors’
data received through communication. Each neighbor i is represented by its position
(xi, yi), speed vi and direction θi

3: function COMPUTE EMERGENCY CONTROL INPUTS(nE
1 )

4: tpos ← Define Target Position(xnob, ynob) ▷ (xnob, ynob) is obstacle’s position
from RSD

5: ζnE
1
← Compute Contour Polygon Area()

6: Ainter ← ∅
7: for each neighbor vehicle in Lx do ▷ Lx is the maneuver lane resulting from

Algorithm 1
8: ζnL

1
← Compute Contour Polygon Area()

9: Av ← ζnE
1
∩ ζnL

1

10: if Av ̸= ∅ then
11: Ainter ← Ainter ∪ Av

12: end if
13: end for
14: nem.a← 0 ▷ Initialize the acceleration input a of nem

15: nem.ρ← 0 ▷ Initialize the steering angle input ρ of nem

16: if Ainter = ∅ then ▷ No risk of colliding with neighbors. The algorithm defines
the steering angle and maintains its speed while changing lanes

17: nem.ρ← Compute Best Steering Angle(tpos)
18: else ▷ Compute both the acceleration and steering needed to avoid the collision
19: nem ← Compute Maneuver Inputs(tpos, Ainter)
20: end if
21: return nem

22: end function
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become a chain of conditional probabilities.

P (nL
u ⊗ nL

u−1 ⊗ ...⊗ nL
1 ⊗ nE

1 )

= P (nL
u ⊗ nL

u−1|nL
u−1 ⊗ nL

u−2)

= P (nL
1 ⊗ nE

1 )
2∏

i=u

P (nL
i ⊗ nL

i−1).

(A.7)

A.1.3 Control Input Computational Algorithm

To define nE
1 ’s maneuver inputs, the CNP considers the risks of colliding with the maneu-

vering vehicles in a chosen lane. Algorithm 6 shows the process of computing the control

inputs (ρt, at) toward the target position tpos. Lines 1-2 provide sensed data as input to the

algorithm. Line 4 selects the target position in the maneuver lane defined by Algorithm 1.

Line 5 calculates the emergency contour area. The next lines examine the proper control

inputs of nE
1 while considering the other driving vehicles.

The contour-based risk analysis is computed in terms of intersection area accordingly

to (A.4). Line 6 initializes the intersection area of the neighbor vehicles’ contour areas. In

lines 7-13, a comparison of the nE
1 ’s contour polygon area with those of the neighboring

vehicles is made to examine the collision risks during any maneuvers. When the vehicle

contours have no intersection, a vehicle maneuver will follow the definition of the steering

angle ρt resulting from (A.3). Lines 14-15 initialize the control inputs. Lines 16-20 define

the control inputs according to the neighboring vehicles’ risks. After defining the needed

inputs, the maneuvers of nem are returned in line 21.

A.2 Collision Strength Minimization

If the collision probability of nem is obtained from (8a), then the vehicle is in an inevitable

collision state (ICS), and it will crash. For this unavoidable situation, a collision strength
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minimization mechanism is needed to minimize the energy transfer between the colliding

vehicles and limit the number of vehicles involved in the collision to the possible extent.

The severity of a collision is proportional to the masses of the two colliding vehicles

and their corresponding speeds. Assuming that an emergency vehicle nem with speed vem

and mass mem collides with an obstacle nob with speed vob and mass mob, the collision

strength calculation is made using their Equivalent Energy Speed (EES). Knowing the

approximate resultant speed v̂em of the emergency vehicle nem after collision, the EES

can be calculated as:

EES = v̂em − vem =
2mob

mem +mob

(vob − vem). (A.8)

The EES computation for vehicles driving in different directions, such as collisions

from changing or overstepping the front vehicle, will result in a more general calculation

form that involves driving direction θem. The speed that nem applies on nob during a

collision is:

´vem = vem cos(θem), (A.9)

then, the EES will be computed as

EES = ˆ́vem − ´vem =
2mob

mem +mob

(vob − ´vem). (A.10)

The greater the difference in vehicle speeds is during a collision, the more severe the

collision is, and the more fatal it is. Autonomous emergency braking, when the vehicle is

in the ICS, reduces the collision severity. Decelerating the nem just before colliding with

nob can reduce the energy transfer between them. It is clear that if the speed difference is

closer to null during a collision, the EES will only depend on the mass difference. The

deceleration of the vehicle just before the collision is:

Dec =
v̂em − vem

∆t

. (A.11)
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Thus, if v̂em = 0 km/h during a collision, the EES is nullified.

This means that the damages from a collision are negligible. The lower the speed is,

the lower the EES is. Another aspect of minimizing the collision strength is to reduce

the number of involved vehicles. CNP has communication-based situational awareness

to notify the driving vehicle of a collision in advance. Prior decisions are required to

steer the next vehicle before arriving at the point of collision. This reduces the number of

vehicles involved in an accident and avoids a chain of collisions.
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Appendix B

CANA Appendix

This section describes the supplement content of CANA.

B.1 Emergency Forwarding in a UAV Network

Fig. B.1 shows an aerial emergency processing structure. The emergency is handled

through a communication protocol wherein UAVs are flying intom clustersC = {C1, C2, ..., Cm}

and the cluster head (CH) leads the cluster communication and maneuver calculations.

Our model uses the K-means clustering approach [31] where CH is a cluster-head UAV,

which makes the smallest intracluster Euclidean distance from its cluster members. CHs

share driving information with each other via Vehicle-to-Vehicle (V2V) communication.

Let’s consider an emergency event such as a UAV suddenly hovering in the direction

of other UAVs’ trajectories. The emergency handling process described in Fig. B.1 han-

dles UAVs’ flights in a manner that avoids collisions in the airspace, and follows these

steps:

Step 1: An emergency event suddenly occurs in the airspace and blocks the UAV’s tra-
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jectory, therefore becoming an obstacle.

Step 2: A cluster member detects and broadcasts the obstacle information to its neigh-

bors.

Step 3: The CH receives and evaluates this information to identify the obstacle collision

risk. It calculates maneuvers for its CMs.

Step 4: The CH then broadcasts the maneuvers changes of its members.

Step 5: The safety information is shared with neighboring clusters via their CHs.

Step 6: Each CH will take proactive steps to address any safety issues and reflect the

trajectory changes from the neighboring cluster.

B.2 Emergency Risk Assessment in Aerial Virtual Lanes

In this section, we expound on the UAV’s probabilistic sequential risk assessment and the

computation of virtual lane quality.

The emergency UAV nE
1 maneuvers toward a lane with better quality. Let the safe

probability qi of a child UAV nc whose flight heads to parent UAV np be

qi = 1− pi, (B.1)

where pi is the collision probability of event np⊗nc. The safe lane quality of the left lane

of the virtual aerial lanes will be computed as follows:

SL =
u∏

i=1

qi. (B.2)

The safe lane quality towards the right lane of the virtual aerial lanes is computed as:

SR =
v∏

k=1

qk. (B.3)
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Figure B.1: Forwarding the emergency and the maneuver handling in clusters.

The safe lane quality in the emergency lane of the virtual aerial lanes is computed as:

SE =
w∏
l=1

ql. (B.4)

The safe lane quality in the upper lane of the virtual aerial lanes is computed as:

SU =

y∏
m=1

qm. (B.5)

And lastly, the safe lane quality in the down lane of the virtual aerial lanes is computed

as:

SD =
z∏

n=1

qn. (B.6)

In the above equations, qi is the safe probability for np and nc in the left lane, qk is

the safe probability for np and nc in the right lane, ql is the safe probability for np and nc

in the emergency lane, qm is the safe probability for np and nc in the upper lane, and qn

is the safe probability for np and nc in the down lane. Given the safe lane qualities SL,
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SR, SE , SU , and SD in the left, right, emergency, upper, and down lanes, respectively, the

decision of the lane where UAV nE
1 maneuvers toward is calculated according to (3.22).
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논문요약 

 

사이버 물리 시스템에서 이동 객체의 안전하고 효율적인 
기동 제어를 위한 컨텍스트 인식 내비게이션 

 

MUGABARIGIRA BIEN AIME 

전자전기컴퓨터공학과 

성균관대학교 

 

 

차량 및 무인 항공기(UAV)와 같은 사이버-물리 시스템에서 끊김 없이 이동하는 

노드의 증가는 의도된 서비스의 품질을 보장하기 위한 안전한 프레임워크를 요구합니다. 본 

논문은 지상 차량 및 무인 항공기(UAV)(일반적으로 UAV로 알려짐)를 위한 컨텍스트 

인식 내비게이션 메커니즘을 연구합니다. 

 

도로상의 자율주행 차량 네트워크는 무인 차량(즉, 자율주행차)의 주행 안전성을 

향상시킬 수 있습니다. 주행 중 도로상의 위험 상황은 관련 차량의 속도, 방향 및 교통 

밀도에 따라 심각도가 높아질 수 있습니다. 주행 중 도로상의 위험 상황은 차량의 속도, 

방향 및 교통 밀도에 따라 심각도가 높아질 수 있습니다. 

 따라서 현재 주행 중인 차량과 비상 구역(예: 도로 위험 및 교통사고 현장)으로 마주 

오는 차량을 모두 처리하는 조종 메커니즘이 필요합니다. 본 논문에서는 도시 도로에서 

주행하는 차량의 안전성을 향상시키는 컨텍스트 인식 내비게이션 프로토콜(CNP)을 

제시합니다. 첫째, CNP는 차량 네트워크와 차량 내 센서를 기반으로 차량의 동작을 

추적하는 충돌 회피 모듈을 포함하고 있으며, 이 모듈은 주행 위험을 분석하여 위험 

상황에서 필요한 기동을 결정합니다. 둘째, CNP는 차량의 기동이 불가능한 상황에서 위험한 

도로의 충돌 피해 심각도를 줄이기 위한 충돌 완화 전략을 수립합니다. CNP의 효과를 

입증하고 평가하기 위해 이론적 분석과 광범위한 시뮬레이션을 수행했습니다. 그 결과, 

CNP는 도로 충돌 위험을 5% 미만으로 유지하면서도 통신 오버헤드를 기준 체계 대비 
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최대 60%까지 줄일 수 있음을 보여주었습니다. 

 

무인 항공기(UAV)는 임무 중심 응용 분야에 매우 적합한 특성으로 인해 최근 

연구자들의 관심을 끌고 있습니다. 여러 대의 UAV가 동일 지역에서 함께 비행할 경우, 

밀도 높은 UAV 네트워크가 생성되므로, UAV 간 충돌을 방지하기 위한 정밀한 제어가 

필요합니다. 본 논문은 교통량이 많은 이종 무인기 네트워크에서 협력 비행 제어를 

사용하는 충돌 회피 항법 알고리즘(CANA)을 제안합니다. 자율 군집 기반 협력 및 조정 

설계를 통해 대규모 무인기 교통 이동 상황 공유를 지원합니다. 제안된 무인기 항법 

시스템은 감지 및 통신을 활용하여 주변 무인기의 특정 상태를 감지하고, 이를 통해 우회 

경로를 설정하여 충돌 가능성을 감지하고 회피한다. 시뮬레이션 기반 평가를 통해 제안된 

CANA의 성능을 검증합니다. 본 알고리즘은 기존 방식 대비 통신 제어 오버헤드를 

66.6%까지 절감하는 동시에, 기준선 대비 충돌 위험은 가장 낮게 유지합니다. 

 

그래프 합성곱 네트워크(GCN)는 지능형 교통 시스템(ITS)에서 안전성, 효율성 및 교통 

예측성을 향상시키기 위해 등장했으며, 이는 도로망의 차량 항법 서비스에 이점을 

제공합니다. 도로망 교통량의 예측 가능성은 배송 서비스 요구 사항을 충족하는 데 

핵심적입니다. 그러나 최적의 교통량 예측은 시간적, 공간적으로 복잡하며 끊임없이 변하는 

환경에 의존하기 때문에 달성하기 어렵습니다. 본 연구는 도로망에서 효율적인 소포 배송을 

위한 머신러닝 기반 자가 적응형 상호작용 내비게이션 도구(ML-SAINT)를 제안합니다. 

GCN이 소포 배송 요건을 충족하는 최적 경로 예측 능력을 분석합니다. ML-SAINT가 

도로 그래프에서 연결된 차량의 최적 택배 배송 일정을 예측할 수 있도록, 빠르고 정확한 

시공간 교통 정보 인식을 제안합니다. 시뮬레이션 결과, 제안된 기법은 배송 차량의 이동 

지연 시간을 최대 44.19%까지 줄여 소포 목적지까지의 차량 이동 시간을 고려했을 때 

기준 기법보다 우수한 성능을 보였습니다. 

 

 

주제어: 지능형 교통 시스템, 컨텍스트 인식 탐색, 차량 네트워크, 충돌 회피, 

그래프 합성 네트워크 
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