
Extensible Intelligent Simulator Architecture for the Development of
Cyber-Physical Systems

Daegeun Choe1, Yiwen (Chris) Shen1, Bien Aime Mugabarigira1, and Jaehoon (Paul) Jeong2

1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon,
Republic of Korea

2Department of Interaction Science, Sungkyunkwan University, Suwon, Republic of Korea
Email: {cdg1994, chrisshen, bienaime, pauljeong}@skku.edu

Abstract

This paper proposes an architecture for extensible
Cyber-Physical Systems (CPS) simulator based on the
open-source software. There are many useful open
source systems but hard to integrate. To solve
integration problems, we design an open-source
based simulation architecture that can cooperate with
another open-source application easily. Our
simulation architecture consists of a physical
simulator, a simulation manager, and external
applications. The simulation manager constructs a
simulation scenario and objects properties. Also,
through the simulation manager, we can efficiently
connect objects in the CPS simulator with external
applications. Using this simulation architecture, we
can make open-source based CPS simulator that can
work efficiently with other open-source applications

Keywords: Intelligent Cyber-Physical Systems
(iCPS), Simulation, Open Source.

1. Introduction

In research of Intelligence Cyber-Physical Systems
(iCPS), to make and operate good simulation is
important issue because testing of iCPS systems in
real-world environments requires high cost and
dangerous components such as vehicles. Also, to
follow the pace of development to technology, we
need to research through simulation. Because of these
reasons, many researchers used various applications
for build-up Cyber-Physical simulation system. For
example, the Veins framework combines OMNet++
and SUMO to make vehicular network simulations [1-
3]. However, it is difficult efficiently to connect with
other applications. In this paper, we propose an
extensible simulation system through merging these
open-source based applications that supplement each
other. To connect two or more applications, we should
made a simulation manager that manage interface
between application and controls simulation states.

The rest of the paper is organized as follows.
Section 2 and 3 describes the architecture of iCPS
simulation system. Next, Section 4 presents system
scenario of the system. Finally, conclusion is provided
in Section 5.

2. System Architecture

The main components of iCPS simulation are
physical simulator, simulation manager, and external
applications. The simulation manager can connects
with two or more open-source applications to
construct extensible simulating environment for
conduct of iCPS simulation system.

Figure 1: Architecture of iCPS Simulation



The simulation manager has three roles; simulation
initiator, simulation logger, and object manager.
Reading simulation information file and object
description file written by JSON, the simulation
manager constructs simulation environment and
controls simulation state such as start or stop. During
the simulation, the simulation manager logs
simulation information such as position or velocity of
objects to review some simulation results. Also,
simulation manager makes skeleton code that contains
object definition and interface for external
applications.

We choose V-REP for physical simulator because
of some reasons [4]. First, V-REP is open-source
software that has useful online document. Second, V-
REP support various programming language for
flexibility and extensibility. Last, V-REP support
external interface called by Remote API. For these
reasons, V-REP can communicate efficiently with
other applications. Using Remote API, simulation
manager can controls simulation state and logs
simulation information. In the same way, external
applications cooperate with V-REP to help some work
that V-REP cannot dose such as network simulation
or complex calculation.

External applications use skeleton code and
Remote API to communicate with V-REP. To
implement and simulate, we use OMNet++ as an
external application. Figure 1 describe the overall
structure of our simulation system.

3. Simulation components

In this section, we explain each components of
iCPS simulation system in detail.

3.1. V-REP physical simulator

One V-REP simulation is represent by a scene that
contains scene object and embedded script. Embedded
script written in ‘Lua’ [5] script handles a particular
function in a simulation. V-REP framework has two
API categories; Regular API and Remote API.

Regular API is used to handle simulation within the
simulator. Each object in V-REP simulation has
associated scripts that contain functions such as
object_act_functions, object_getAttr_functions and
object_setAttr_functions. These functions written in
Regular API handle act of associated object, modify
and return attribute of associated object [4].

To efficiently communicate between V-REP and
external applications, we made a special object called
by Script_Function_Manager. This special object
communicate with external applications through the
calling to Remote API. If some applications want to
control actions of objects or get information of objects,
they need to send command message to
Script_Function_Manager, and it decodes the
command and calls object function such as
object_getAttr_functions(). Figure 2 describe
structure of V-REP simulation system.

3.2. Simulation Manager

As we explained in Section 2, the simulation
manager consists of simulation initiator, simulation
logger, and object manager. The simulation manager
communicate with V-REP using Remote API. Also it
makes skeleton code that contains Remote API for
external applications. External applications can
handle V-REP simulation same way through skeleton
code that is made by simulation manager. Figure 3
describe functions of simulation manager.

3.3. External applications

External applications can be any applications if
who can modify codes or add functions. To implement
this, we choose OMNet++ for network simulation. To
communicate between OMNet++ and V-REP, we add

Figure 2: Structure of V-REP Simulation

Figure 3: Structure of Simulation Manager



the skeleton code to OMNet++. For example,
OMNet++ can get coordinate of objects or change
trajectory of objects.

4. Scenario of Simulation

In this section, we show two scenario; one is
simulation manager case and the other is external
application case.

4.1. Scenario of simulation manager

Simulation manager sends command to V-REP
simulator and other applications to initiate iCPS
simulation. The start point of simulation is
synchronized by simulation manager. On the other

hand, V-REP synchronizes progress of simulation
during simulation. Simulation manager read JSON
files that include simulation information and objects
description to make V-REP scene. When the
simulation is started, Script_Function_Manager gets
objects information and sends to simulation manager
for logging. Simulation manager save log file as some
logging options in JSON files. When the specific
condition is satisfied, simulation manager sends
command to V-REP to stop the simulation. Figure 4
show this scenario.

4.2. Scenario of external application

External applications such as OMNet++ are started
by simulation manager. These applications handle V-
REP simulation through Remote API. For example,
the applications change coordinate of objects or add
new objects in scene. At that same time, these
applications participate in simulation using Remote
API. Also, external applications get information from
V-REP and do their work such as complex calculation
or other simulation. All these works are processed by
Script_Function_Manager. External applications
send come command to Script_Function_Manager
through Remote API. Figure 5 show the scenario of
external applications.

5. Implementation for Intelligent
Transportation Systems

In this section, we show intelligent transportation
system made by our architecture as an implementation
example. The system can simulate physics and
network environment. To build V-REP scene, the
simulation manager read JSON file that describe
vehicles and crossroads. V-REP simulates virtual
vehicles on roads. In the simulation system, each
vehicle measure coordinate using virtual GPS.
OMNet++ simulates network communications

Figure 6: V-REP Simulation of Intelligent
Transportation Systems



between vehicles. OMNet++ gets coordinate of
vehicle from V-REP and simulate packet exchange
between two vehicles. The following vehicle
calculates a distance from leading vehicle. If the
distance is smaller than safety distance, the following
vehicle stops to avoid collision. Figure 6 is screenshot
of V-REP simulation of intelligent transportation
system.

6. Conclusion

In this paper, we purpose extensible simulation
architecture for iCPS projects. We design simulation
manager to provide extensibility of simulation
systems. The simulation manager conduct the iCPS
simulation. It control simulation states, record the
simulation information, and make skeleton code that
contain interface for external applications. Also, we
choose V-REP simulation for physical simulation
because it support many functions such as Remote API.
To demonstrate that many applications can be
integrated efficiently, we connect V-REP with
OMNet++ as networking simulator. We expect this
simulation architecture will help many research who
want to combine many open-source application for
iCPS projects.

Acknowledgment

This research was supported by Next-Generation
Information Computing Development Program
through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT
(2017M3C4A7065980).

References

[1] Veins, Vehicles in Network Simulation,
“http://veins.car2x.org/”.

[2] OMNet++, Discrete Event Simulator,
“https://www.omnetpp.org/”.

[3] SUMO, Simulation of Urban Mobility,
“http://sumo.dlr.de/”.

[4] V-REP, Virtual Robot Experimentation Platform,
“http://www.coppeliarobotics.com/”.

[5] Lua, The Script Programming language,
“https://www.lua.org/about.html/”


